首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Negative ion electrospray-tandem mass spectrometry has been employed to study chloride adducts of saccharide molecules. Decompositions of [M + Cl]- obtained under identical low-energy collision conditions allow the approximate ranking of chloride affinities and gas-phase acidities of a series of isomeric monosaccharides. The ketohexoses are found to be more acidic than the aldohexoses. Chloride adduct decompositions are examined for a glucopyranosyl fructose and a glucopyranosyl glucose series. For each disaccharide series, the linkage position is shown to markedly influence the favored pathways of [M + Cl]- decompositions, initiated either by loss of neutral HCl to form [M - H]- and possibly leading to further (consecutive) decompositions, or by loss of M to form Cl-. Upon formation of [M - H]-, both cross-ring cleavages and glycosidic bond decompositions were observed in varying degrees for the two series of disaccharides. Remarkably, for three non-reducing polysaccharides that each contain a terminal sucrose group at the "downstream" end, chlorine-containing product ions arising from cleavage of the Glcalpha-2Fru linkage have been observed. Apart from Cl-, chlorine-containing product ions are not observed for any of the other disaccharides investigated, and they appear to be specifically diagnostic of a terminal Glcalpha-2Fru linkage. Their appearance is rationalized based upon a substantially reduced tendency for HCl loss from these non-reducing polysaccharides.  相似文献   

2.
A tetraquadrupole mass spectrometer with consecutive surface-induced dissociation/collisionally activated dissociation (SID/CAD) capability has been used to investigate the decompositional behaviour of bifunctional terpenes. SID and CAD yield similar daughter-ion spectra of protonated molecules generated by ammonia chemical ionization. These collision mass spectra of MH+ contain diagnostic daughter ions which can be used to distinguish diastereomeric terpenols. Pronounced stereochemical effects underlying specific decompositions of the ammonium adduct and protonated molecule forms of the bifunctional terpenes have been attributed to the formation of protonated molecules of lower stability produced via decomposition of [M + NH4]+. Evidence supporting the existence of such unusual protonated molecules formed via collision is given in the grand-daughter spectra of [M + NH4]+. Triple mass Spectrometry is shown to promote the Stereospecific formation and subsequent diagnostic decomposition of these singular protonated forms, thus improving the ability to differentiate the diastereomers.  相似文献   

3.
Cationic water clusters containing iodine, of the composition I(H2O)n+, n = 0-25, are generated in a laser vaporization source and investigated by FT-ICR mass spectrometry. An investigation of blackbody radiation-induced fragmentation of size-selected clusters I(H2O)n+, n = 3-15, under collision-free conditions revealed an overall linear increase of the unimolecular rate constant with cluster size, similar to what has been observed previously for other hydrated ions. Above a certain critical size, I(H2O)n+, n greater than or approx. 13, reacts with HCl by formation of the interhalide ICl and a protonated water cluster, which is the reverse of a known solution-phase reaction. Accompanying density functional calculations illustrate the conceptual differences between cationic and anionic iodine-water clusters I(H2O)n+/-. While I-(H2O)n is genuinely a hydrated iodide ion, the cationic closed-shell species I(H2O)n+ may be best viewed as a protonated water cluster, in which one water molecule is replaced by hypoiodous acid. In the strongly acidic environment, HOI is protonated because of its high proton affinity. However, similar to the well-known H3O+/H5O2+ controversy in protonated water clusters, a smooth transition between H2IO+ and H4IO2+ as core ions is observed for different cluster sizes.  相似文献   

4.
The efficiency of formation of protonated heterotrimers of lysine with underivatised sugars (mono-, di-, and trisaccharides) and N-acetylglucosamine (N-AcGlc) was studied under electrospray ionisation conditions. The collision induced dissociation spectra of [Lys + sugar + NAcGlc + H](+) resulted in [Lys + NAcGlc + H](+) and [Lys + sugar + H](+) as the major product ions. Relative abundances of these two fragments reflect the extent of adduct formation of protonated lysine plus sugar, with reference to the reference compound NAcGlc. This relative abundance ratio was found to be characteristic of the sugar structure. In this way it was observed that the ability of lysine to form a protonated heterodimer with neutral sugars increases with an increase in the number of acetal oxygens. Lactose showed an anomalously high affinity for protonated Lys, possibly reflecting the axial hydroxyl at C4. The postulated involvement of the epsilon-NH(2) group of lysine in the formation of protonated heterodimers with sugars was supported by similar results of similar experiments with NH(3) in place of lysine.  相似文献   

5.
Unsaturated 5(4H)-oxazolones lead, by methanolysis, to the corresponding dehydroamino acid derivatives. Interestingly, under atmospheric pressure chemical ionisation (APCI) conditions, the latter give rise, aside from abundant [M+H](+) ions, to [MHbondCH(3)OH](+) species, formally corresponding to the protonated oxazolones employed for their synthesis. Retrosynthetic processes have often been described as energetically favoured decompositions of odd-electron molecular ions but never invoked in APCI-activated fragmentations. To investigate this possible retrosynthetic process, occurring also under collisional conditions, some experiments on the deuterated analogues have been undertaken. The breakdown curves of [M+H](+) of oxazolones and [MHbondCH(3)OH](+) of the dehydroamino acid derivatives are superimposable, proving their structural identity and giving experimental evidence of the occurrence of a real retrosynthetic process from even-electron protonated molecules.  相似文献   

6.
Electron capture dissociation (ECD) of a series of custom-synthesized oligonucleotide pentamers was performed in a Fourier-transform mass spectrometer with a conventional filament-type electron gun. Dissociation of oligonucleotide ions by electron capture generates primarily w/d-type and z/a-type ions with and without the loss of a nucleobase fragment ions. Minor yields of radical [z/a + H]. fragment ions were also observed in many cases. It is interesting to note that some nucleoside-like fragment ions and protonated nucleobase ions (except thymine-related nucleobases and nucleoside-like fragments) were observed in most ECD spectra. The formation of these low-mass fragment ions was tentatively attributed to the secondary fragmentation of the radical [z + H]. fragment ions. From the ECD tandem mass spectra of a series of C/T based binary oligonucleotide ions, including d(CTCTC), d(CTTTC), d(TCCCT), d(CCCCT), and d(TCCCC), it was clearly demonstrated that the formation of many sequence ions was sensitive to the position of cytosine (or the position of charge carrier). The findings of this work support a notion that the ECD of protonated oligonucleotide molecules is charge-directed with the electron being captured by the protonated nucleobase.  相似文献   

7.
Fatty acids have for many years been characterized by mass spectrometry using electron ionization after chemical derivatization. When fatty acids are ionized using desorption/ionization methods such as electrospray ionization or fast atom bombardment, structural information is usually obtained through high-energy collision-induced dissociation (CID) using sector instruments. It has been shown that copper displays very interesting properties in the gas phase during CID. In this study, the reactivity of saturated and unsaturated fatty acid-copper [M-H+Cu(II)]+ complex and the role of the copper ion in promoting fragmentations were investigated under low-energy collisional activation conditions. The decomposition of these species in an ion trap instrument led to diagnostic ion series that reflect C--C bond cleavage, which involves Cu(II) reduction followed by the release of an alkyl radical. It was demonstrated that in this way the localization of one or two homoconjugated double bonds is possible using low-energy CID. Moreover, the distinction of cis and trans isomers is possible through characteristic product ions related to a specific loss of CO2. When these experiments are repeated using a triple-quadrupole instrument with argon as collision gas, a different behavior is observed as in this case, in addition to the product ion distributions observed in the ion trap, other distributions are observed that reflect the influence of the different kinetic shifts and the occurrence of consecutive decompositions. Different examples are presented with various saturated and unsaturated fatty acid chains. Mechanisms are proposed in order to rationalize the experimental observations.  相似文献   

8.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

9.
The Claisen rearrangement is a well-known process occurring in condensed phase. In the gas-phase protonated allyl phenyl ethers, propargyl phenyl ethers, and N-allyl aniline produced by positive ion chemical ionization undergo Claisen rearrangement. This reaction has been observed even in the case of odd-electron molecular ions. Phenyl allenyl ether molecular ions actually undergo Claisen rearrangement, producing intense [M - CO](+*) ions. In this investigation, the behavior of protonated benzyloxy indole and some of its derivatives, obtained in electrospray conditions, is described. Low-energy MS/MS experiments carried out on [M + H](+) species show CO loss and an unexpected water loss: both can be justified only by the occurrence of Claisen rearrangement. Deuterium labeling experiments confirm this mechanism. The influence of different substituents in the indole moiety is discussed.  相似文献   

10.
The mass spectrometric behaviour of a series of 2-aryl substituted 4,7-dioxo-4,5,6,7-tetrahydroindoles has been studied in different ionization conditions (Electron Ionization and Fast Atom Bombardment), with the aid of the metastable ion studies. In electron ionization conditions all the compounds exhibit a highly favoured, primary H2 loss giving rise to the corresponding indole-4,7-diones; in the usual spectra no evidence for the molecular ions in the enolic form was found, while the OH* loss observed in the MIKE (mass analyzed ion kinetic energy) spectra of molecular ions suggests that species at low internal energy content isomerize to the corresponding tautomeric enolic form. FAB mass spectra show easy formation of an unusual [M + 2H]+ species, together with abundant [M + H]+ and M+ cations.  相似文献   

11.
ESI and CID mass spectra were obtained for four pyrimidine nucleoside antiviral agents and the corresponding compounds in which the labile hydrogens were replaced by deuterium using gas-phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M + H](+) and [M - H](-) ions and the exchanged analogs, [M(D(x)) + D](+) and [M(D(x)) - D](-), produced by ESI using a SCIEX API-III(plus) mass spectrometer. Protonated pyrimidine antiviral agents dissociate through rearrangement decompositions of base-protonated [M + H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the glycosidic bonds with charge retention on the sugar moiety eliminates the base moiety as a neutral molecule and produces characteristic sugar ions. CID of protonated pyrimidine bases, [B + H](+), occurs through three major pathways: (1) elimination of NH(3) (ND(3)), (2) loss of H(2)O (D(2)O), and (3) elimination of HNCO (DNCO). Protonated trifluoromethyl uracil, however, dissociates primarily through elimination of HF followed by the loss of HNCO. CID mass spectra of [M - H](-) ions of all four antiviral agents show NCO(-) as the principal decomposition product. A small amount of deprotonated base is also observed, but no sugar ions. Elimination of HNCO, HN(3), HF, CO, and formation of iodide ion are minor dissociation pathways from [M - H](-) ions.  相似文献   

12.
MnO2 nanosheet with acetylene black composite material has been synthesized from layered K0.45MnO2 powder. The electrochemical lithiation reaction of nanosheet composite material proceeds in a different manner from that of the parent material, layered K0.45MnO2 powder. To elucidate the origin of the changes in discharge profile, the electronic and local structures for the nanosheet composites and its parent and protonated material have been investigated by Mn K-edge and O K-edge X-ray absorption spectroscopy (XAS). The results showed that local and electronic structure around Mn ions does not vary during nanosheet formation, while significant changes in electronic structure around oxide ions were observed. Accordingly, it is suggested that the difference observed in discharge profile is due to the electronic structural change induced by nanosheet formation.  相似文献   

13.
The mass spectral behaviour of (S,S)-2-substituted 4,4-diphenyl-3,1-oxazabicyclo[3.3.0]octanes has been studied with the aid of mass-analyzed ion kinetic energy spectrometry and accurate mass measurements under fast atom bombardment (FAB) and electron impact (EI) ionization conditions. Under FAB ionization, all compounds show a tendency to form protonated aldehyde or benzophenone ions and to form protonated 1-azabicyclo[3.1.0]hexane ions, which can further lose an ethylene or cyclopropane from the pyrrolidine ring to produce protonated 1-azabicyclo[1.1.0]butane ions and 3H-azirine ions, respectively. Under EI ionization, a similar fragmentation to that under FAB ionization was observed. The title compounds also show a tendency to yield oxirane ions and oxirenium ions by loss of pyrrolidine and pyrrolidine plus H. Ring contractions of 1,3-oxazolidine by loss of an aldehyde or ketone and of pyrrolidine by loss of an ethylene or cyclopropane were observed under both FAB and EI ionization conditions.  相似文献   

14.
The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ion, some of which fragment via water loss to give [M + H + (CH3)2CO - H2O]+ Schiff's base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO - H2O]+ Schiff's base adducts is dependent on the ability of the peptide to act as an intramolecular proton "shuttle." The structure and mechanisms for the formation of these Schiff's base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff's base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type "sequence" ions. Potential structures of the b1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.  相似文献   

15.
The loss of substituents X from molecular ions of ortho substituted 2-benzoyl pyridines has been investigated as a function of the dissociation energy of the C? X bond. Comparison of unimolecular and collisional induced decompositions of the resulting [M ? X]+ ions and reference ions arising from 3-hydroxypyrido[1,2-α]indole shows that cyclic fragment ions are formed in every case by an intramolecular substitution reaction with the exception of the parent compound (X = H), which gives rise to a mixture of [M ? H]+ ions with different structures. The heat of formation of the cyclic ion has been estimated experimentally and by calculation using thermochemical data, and from this value and the appearance energies, the activation energies of the reverse reactions have been evaluated for the different reaction systems. Measurement of the kinetic energy release during the substitution reactions shows that only part of the reverse activation energy is released as kinetic energy. The energy partitioning quotient varies from 0.37 to 0.08 depending on the dissociation energy of the C? X bond or the reaction enthalpy. A sudden change in the energy partitioning quotient is observed with increasing exothermicity of the reaction, paralleling the behaviour of similar reaction systems. These results are interpreted as a demonstration of the influence of the variation of transition state position on the energy partitioning quotient.  相似文献   

16.
Electrospray ionization ion trap mass spectrometry has been used to distinguish three pairs of positional isomers of a new series of N-blocked hybrid peptides derived from repeats of phenylalanine(D)-beta3-h-valine/beta3-h-valine-phenylalanine(D) (FbetaV/betaVF) non-natural amino acids. MSn of protonated isomeric peptides produces characteristic fragmentation involving the peptide backbone, the Boc group and the side chain. FbetaV-peptides can be distinguished from betaVF-peptides by the loss of R-OH from [M+H-Boc+H]+, which is either of relatively low abundance or totally absent for the latter peptides. In contrast, betaVF-peptides show abundant Mannich base characteristic ions by the elimination of ammonia, and imine due to a retro-Mannich cleavage. This fragmentation is absent for FbetaV-peptides. When beta-valine is at the C-terminus, abundant b+(n-1) ions are produced. This is ascribed to the probable formation of a stable diketopiperazine structure, and this has been supported by the loss of H2O and CO in the CID spectra of b+(n-1) ions. The hybrid dipeptide acids have also been distinguished in negative ion mass spectrometry.  相似文献   

17.
Pure, neutral formic acid (HCOOH)n+1 clusters and mixed (HCOOH)(H2O) clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV using a very compact, capillary discharge, soft x-ray laser. During the ionization process, neutral clusters suffer little fragmentation because almost all excess energy above the vertical ionization energy is taken away by the photoelectron, leaving only a small part of the photon energy deposited into the (HCOOH)n+1+ cluster. The vertical ionization energy minus the adiabatic ionization energy is enough excess energy in the clusters to surmount the proton transfer energy barrier and induce the reaction (HCOOH)n+1+-->(HCOOH)nH+ +HCOO making the protonated (HCOOH)nH+ series dominant in all data obtained. The distribution of pure (HCOOH)nH+ clusters is dependent on experimental conditions. Under certain conditions, a magic number is found at n=5. Metastable dissociation rate constants of (HCOOH)nH+ are measured in the range (0.1-0.8)x10(4) s(-1) for cluster sizes 4相似文献   

18.
The behaviour of some N,N'-disubstituted hexahydropyrimidines, a class of naturally occurring compounds of biological and biomedical interest, has been studied in both electron ionization (EI) and electrospray ionization (ESI) modes coupled with collisional experiments (ESI-MSn). In both techniques, the [M-H]+ ions are highly abundant, even if their formation is generated by two different mechanisms, i.e. H. loss from the M+. species in the case of EI and hydride (H-) abstraction from the molecules in the case of ESI. Furthermore, due to the low, step-by-step internal energy deposition typical of collisional experiments performed in an ion trap mass spectrometer, different fragment ions were observed in EI and ESI-MSn collisions. In both cases, the ions can be related to the original structure and allow us to identify the positions in which the different substituents are present.  相似文献   

19.
The behaviour of some ortho-alkylhetero-substituted diphenylcarbinols, including deuterium labelled derivatives, under chemical ionisation (methane or isobutane) conditions has been investigated. It has been determined that ortho-alkylhetero diphenylmethyl cations formed by water elimination from the protonated molecule undergo consecutive rearrangements which afford benzyl (or tropylium) ions previously observed for ortho-substituted diphenylcarbenium ions generated by electron ionisation. This reaction also occurs under low-energy collision conditions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The gas/phase behaviour of N-sulfonylated purine nucleic bases and nucleosides towards electron impact (EI) and matrix-assisted laser desorption/ionization (MALDI) occurring in a ion trap of a Fourier transform ion cyclotron resonance mass spectrometer is investigated. The influence of the storage time on the protonated molecule ([M+H](+)) abundance under EI conditions confirms that the formation of these ions proceeds through ion/molecule reactions. Using stored-waveform inverse Fourier transform (SWIFT) selective isolation of M(+.) or H(3)O(+), self-chemical ionization, M(+.)/M, and chemical ionization, H(3)O(+)/M, are detected. Investigation of specific EI expulsion of SO(2), SO(2)H and/or SO(2)H(2) from M(+.) and/or [M+H](+) shows that oxygen protonation in bond;SO(2)bond; proceeds faster than nitrogen protonation. Expulsion of SO(2) from molecular ions is not observed in MALDI mass spectra of nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号