首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary An analysis of a two dimensional oscillatory flow past an infinite porous plate with contant suction is carried out on taking into account the couple stresses. Here the free stream velocity oscillates about a nonzero constant mean. Approximate solutions are derived to coupled linear equations, and the expressions for the mean velocity, the transient velocity, the mean skinfriction, the amplitude and the phase of skin-friction are obtained. The solutions are followed by discussion. the effects of variations of α(νr/ν), β(Iν/γ) and λ, the frequency are graphically represented and physically interpreted. It is observed that the reverse type of flow does not occur in the presence of the couple stresses.
Sommario In questo lavoro è svolta un'analisi di un flusso oscillatorio bidimensionale sopra una piastra porosa, infinita, con aspirazione costante, tenendo conto delle coppie di sforzo. La velocità della corrente libera oscilla attorno ad un valore medio costante diverso da zero. Si deducono le soluzioni approssimate per le equazioni lineari accoppiate e si ottengono le espressioni per la velocità media, la velocità transitoria, l'attrito superficiale, l'ampiezza e la fase. Si discutono le soluzioni. Si rappresentano graficamente e si interpretano fisicamente gli effetti delle variazioni di α(νr/ν), β(Iν/γ) e λ. Si osserva che in presenza delle coppie di sforzo nel fluido non si ha il tipo inverso di flusso.
  相似文献   

2.
Summary In this paper we look for T-periodic solutions of dynamical systems. Particularly we consider the system whereU ɛC 1(ℝ n x x ℝ, ℝ),U(x, t + T)=U(x,t) ∀ x n , ∀t ɛ ℝ T>0. We assume that the problem is asymptotically linear with a bounded nonlinearity. Under a resonance assumption, we find a multiplicity of T-periodic solutions for T large enough.
Sommario In questo lavoro si cercano soluzioni periodiche di periodo T assegnato di sistemi dinamici. In particolare si considera un sistema di n equazioni differenziali del secondo ordine del tipo doveU ɛC 1(ℝ n x x ℝ, ℝ),U(x, t + T)=U(x,t) ∀ x n , ∀t ɛ ℝ T>0. Nel caso in cui il problema sia asintoticamente lineare, con termine nonlineare limitato e in condizioni di risonanza, troviamo che esiste tale che per il sistema ha una molteplicità di soluzioni.


Presented at the VII A.I.M.E.T.A. and supported by M.P.I. (40% and 60%).  相似文献   

3.
 The problem of the self-similar boundary flow of a “Darcy-Boussinesq fluid” on a vertical plate with temperature distribution T w(x) = T +A·x λ and lateral mass flux v w(x) = a·x (λ−1)/2, embedded in a saturated porous medium is revisited. For the parameter values λ = 1,−1/3 and −1/2 exact analytic solutions are written down and the characteristics of the corresponding boundary layers are discussed as functions of the suction/ injection parameter in detail. The results are compared with the numerical findings of previous authors. Received on 8 March 1999  相似文献   

4.
1ProblemsandMainResultsInthispaper,westudythenonlinearvibrationsofinfiniterodswithviscoelasticity.Theconstitutionlawoftherods...  相似文献   

5.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water at 4°C (maximum density) when the surface heat flux varies as x m and the velocity outside the boundary layer varies as x (1+2m)/2, where x measures the distance from the leading edge, is discussed. Assisting and opposing flows are considered with numerical solutions of the governing equations being obtained for general values of the flow parameters. For opposing flows, there are dual solutions when the mixed convection parameter λ is greater than some critical value λ c (dependent on the power-law index m). For assisting flows, solutions are possible for all values of λ. A lower bound on m is found, m > −1 being required for solutions. The nature of the critical point λ c is considered as well as various limiting forms; the forced convection limit (λ = 0), the free convection limit (λ → ∞) and the limits as m → ∞ and as m → −1.  相似文献   

6.
IntroductionInthispaper,weconsidertheellipticsystem(1λ) -Δu=f(λ,x,u)-v  (inΩ),-Δv=δu-γv(inΩ),u=v=0(onΩ),whereΩisasmoothboundeddomaininRN(N≥2)andλisarealparameter.Thesolutions(u,v)ofthissystemrepresentsteadystatesolutionsofreactiondiffusionsystemsderivedfromseveralap…  相似文献   

7.
Ettore Bellomo 《Meccanica》1969,4(2):109-121
Summary In this paper two cases of transverse disturbances in plane Poiseuille flow with quite different Reynolds number R have been considered. The aim is to prove the feasibility of a computational method described by the author in a previous paper. This method can be applied to the study of non-linear two- and three-dimensional disturbances in plane parallel flows.One of the cases chosen as a check is the well known Thomas case with R=104 and =1. The other case is R=250 and =0.5 and its interest lies in the fact that the Reynolds stress has a sign opposite to viscosity.After having written down in Section1, some formulae useful for comparison, the Thomas case is considered in Section2. Some space is given to discussing Thomas values in order to show the importance of using three-point instead of five-point finite-difference expressions for second derivatives across the channel.Reynolds stress, stream function, vorticity, rate of amplification and celerity of the perturbation, and separate contributions to the last two quantities from viscosity and transport result from the method in full details across the channel for this and for the following case in Section3.The feasibility and accuracy of the method may thus be regarded as proven.
Sommario Nel presente lavoro sono stati considerati due casi di perturbazioni trasverse nel moto piano di Poiseuille in corrispondenza a due valori piuttosto diversi del numero R di Reynolds. Lo scopo era quello di provare un metodo di calcolo già descritto in un precedente lavoro, metodo che può essere applicato per perturbazioni non lineari trasverse e longitudinali nei moti piani paralleli. Uno dei due casi scelti è il ben noto caso di Thomas con R=104 e =1. L'altro caso corrisponde a R=205 e =0.5 ed è secondo l'autore di interesse particolare in quanto mostra la possibilità che vortici fortemente smorzati producano sul moto medio un effetto opposto a quello della viscosità.Dopo avere riportato nel primo paragrafo le formule più utili per il confronto, il caso di Thomas è analizzato nel paragrafo2. Ci si sofferma un po' su questo caso anche per discutere la precisione di una for mula interpolativa a tre valori usata per le derivate seconde in senso ortogonale alla o alle pareti. Il procedimento complessivo è tale da fornire via via dettagliati ed attendibili valori, oltre che per la funzione di corrente e la vorticità, anche per lo stress di Reynolds, il coefficiente di amplificazione e la velocità della perturbazione a differenti profondità. Per queste due ultime grandezze vengono separati i contributi del trasporto e della viscosità. Tutto questo è fatto anche per il caso R=250 nel paragrafo3. Si può così concludere positivamente per quanto riguarda la utilizzabilità del metodo seguito e la precisione dei risultati.


This work has been performed within the research group no. 10 of the Consiglio Nazionale delle Ricerche.  相似文献   

8.
This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n < ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture.  相似文献   

9.
Résumé A l’aide d’inégalités différentielles, on établit une estimation proche de l’optimalité pour la norme dans de l’unique solution bornée de u′′ + cu′ + Au = f(t) lorsque A = A * ≥ λ I est un opérateur borné ou non sur un espace de Hilbert réel H, V = D(A 1/2) et λ, c sont des constantes positives, tandis que . By using differential inequalities, a close-to-optimal bound of the unique bounded solution of u′′ + cu′ + Au = f(t) is obtained whenever A = A * ≥ λ I is a bounded or unbounded linear operator on a real Hilbert space H, V = D(A 1/2) and λ, c are positive constants, while .
  相似文献   

10.
IntroductionWeoftenmeettheproblemofsolvingequationofparabolictypeinmanyfieldssuchasseepage ,diffusion ,heatconductionandsoon .Inthecaseof3_dimension ,themodelisaninitialandboundaryvalueproblemasfollows: u t = 2 u x2 2 u y2 2 u z2      (0 <x,y,z<1 ;t>0 ) ,u(x ,y,z,0 ) =φ(x ,y ,z)…  相似文献   

11.
This paper is concerned with the spectrum the Hill operator L(y) = −y′′ + Q(x) y in L2per[0, p]{L^{2}_{\rm per}[0, \pi]} . We show that the eigenvalues of L can be characterized by knowing one of its eigenfunctions. Applications are given to nonlinear stability of a class of periodic problems.  相似文献   

12.
We deal with a reaction–diffusion equation u t = u xx + f(u) which has two stable constant equilibria, u = 0, 1 and a monotone increasing traveling front solution u = φ(x + ct) (c > 0) connecting those equilibria. Suppose that u = a (0 < a < 1) is an unstable equilibrium and that the equation allows monotone increasing traveling front solutions u = ψ1(x + c 1 t) (c 1 < 0) and ψ2(x + c 2 t) (c 2 > 0) connecting u = 0 with u = a and u = a with u = 1, respectively. We call by an entire solution a classical solution which is defined for all . We prove that there exists an entire solution such that for t≈ − ∞ it behaves as two fronts ψ1(x + c 1 t) and ψ2(x + c 2 t) on the left and right x-axes, respectively, while it converges to φ(x + ct) as t→∞. In addition, if c > − c 1, we show the existence of an entire solution which behaves as ψ1( − x + c 1 t) in and φ(x + ct) in for t≈ − ∞.  相似文献   

13.
In this paper, a new three-level explicit difference scheme with high-orderaccuracy is proposed for solving three-dimensional parabolic equations. The stabilitycondition is r=△t/△x2 =△t/△y2=△t/△z2≤1/4, and the trumcation error is O(△t2+△x4).  相似文献   

14.
This paper is concerned with the spectrum the Hill operator L(y) = −y′′ + Q(x) y in L2per[0, p]{L^2_{{\rm per}}[0, \pi]}. We show that the eigenvalues of L can be characterized by knowing one of its eigenfunctions. Applications are given to nonlinear stability of a class of periodic problems.  相似文献   

15.
A closed-form model for the computation of temperature distribution in an infinitely extended isotropic body with a time-dependent moving-heat sources is discussed. The temperature solutions are presented for the sources of the forms: (i) 01(t)=0 exp(−λt), (ii) 02(t) =0(t/t *)exp(−λt), and 03(t)=0[1+a cost)], where λ and ω are real parameters and t * characterizes the limiting time. The reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation of an incomplete gamma function Γ(α,x;b) and its decomposition C Γ and S Γ. The solutions are presented for moving, -point, -line, and -plane heat sources. It is also demonstrated that the present analysis covers the classical temperature solutions of a constant strength source under quasi-steady state situations. Received on 13 June 1997  相似文献   

16.
We find conditions for the unique solvability of the problem u xy (x, y) = f(x, y, u(x, y), (D 0 r u)(x, y)), u(x, 0) = u(0, y) = 0, x ∈ [0, a], y ∈ [0, b], where (D 0 r u)(x, y) is the mixed Riemann-Liouville derivative of order r = (r 1, r 2), 0 < r 1, r 2 < 1, in the class of functions that have the continuous derivatives u xy (x, y) and (D 0 r u)(x, y). We propose a numerical method for solving this problem and prove the convergence of the method. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 4, pp. 456–467, October–December, 2005.  相似文献   

17.
In this paper we derive necessary and sufficient conditions for strong ellipticity in several classes of anisotropic linearly elastic materials. Our results cover all classes in the rhombic system (nine elasticities), four classes of the tetragonal system (six elasticities) and all classes in the cubic system (three elasticities). As a special case we recover necessary and sufficient conditions for strong ellipticity in transversely isotropic materials. The central result shows that for the rhombic system strong ellipticity restricts some appropriate combinations of elasticities to take values inside a domain whose boundary is the third order algebraic surface defined by x 2+y 2+z 2−2xyz−1=0 situated in the cube , , . For more symmetric situations, the general analysis restricts combinations of elasticities to range inside either a plane domain (for four classes in the tetragonal system) or in an one-dimensional interval (for the hexagonal systems, transverse isotropy and cubic system). The proof involves only the basic statement of the strong ellipticity condition.   相似文献   

18.
This is a series of studies on Wu’s conjecture and on its resolution to be presented herein. Both are devoted to expound all the comprehensive properties of Cauchy’s function f(z) (z = x + iy) and its integral J[f(z) ] ≡(2πi) -1 C f(t)(t z) -1dt taken along the unit circle as contour C,inside which(the open domain D+) f(z) is regular but has singularities distributed in open domain Doutside C. Resolution is given to the inverse problem that the singularities of f(z) can be determined in analytical form in terms of the values f(t) of f(z) numerically prescribed on C(|t| = 1) ,as so enunciated by Wu’s conjecture. The case of a single singularity is solved using complex algebra and analysis to acquire the solution structure for a standard reference. Multiple singularities are resolved by reducing them to a single one by elimination in principle,for which purpose a general asymptotic method is developed here for resolution to the conjecture by induction,and essential singularities are treated with employing the generalized Hilbert transforms. These new methods are applicable to relevant problems in mathematics,engineering and technology in analogy with resolving the inverse problem presented here.  相似文献   

19.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

20.
Let be the exterior of the closed unit ball. Consider the self-similar Euler system
Setting α = β = 1/2 gives the limiting case of Leray’s self-similar Navier–Stokes equations. Assuming smoothness and smallness of the boundary data on ∂Ω, we prove that this system has a unique solution , vanishing at infinity, precisely
The self-similarity transformation is v(x, t) = u(y)/(t* − t)α, y = x/(t* − t)β, where v(x, t) is a solution to the Euler equations. The existence of smooth function u(y) implies that the solution v(x, t) blows up at (x*, t*), x* = 0, t* < + ∞. This isolated singularity has bounded energy with unbounded L 2 − norm of curl v.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号