首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Mean spherical approximation (MSA) for electrolyte solution has been extended to investigate the role of partial solvent polarization densities around an ion in a completely asymmetric binary dipolar mixture. The differences in solvent diameters, dipole moments, and ionic size are incorporated systematically within the MSA framework in the present theory for the first time. In addition to the contributions due to difference in dipole moments, the solvent-solvent and ion-solvent size ratios are found to significantly affect the nonideality in binary dipolar mixtures. Subsequently, the theory is used to investigate the role of ion-solvent and solvent-solvent size ratios in determining the nonideality in Born free energy of solvation of a unipositive rigid ion in alcohol-water and dimethyl sulfoxide-acetonitrile mixtures, where the solvent components are represented only by their molecular diameters and dipole moments. Nonideality in Born free energy of solvation in such simplified mixtures is found to be stronger for smaller ions. The slope of the nonideality for smaller alkali metal ions in methanol-water mixture is found to be opposite to that for larger ion, such as quaternary tertiary butyl ammonium ion. For ethanol-water mixtures, the slopes are in the same direction for all the ions studied here. These results are in qualitative agreement with experiments, which is surprising as the present MSA approach does not include the hydrogen bonding and hydrophobic interactions present in the real mixtures. The calculated partial polarization densities around a unipositive ion also show the characteristic deviation from ideality and reveal the microscopic origin of the ion and solvent size dependent preferential solvation. Also, the excess free energy of mixing (in the absence of any ion) for these binary mixtures has been calculated and a good agreement between theory and experiment has been found.  相似文献   

2.
The partial molal volumes of Li+, Na+, K+, Rb+, Cs+, Cl, Br, I, and NO 3 - in DMSO at 25°C have been determined from ultrasonic vibration potential data and density data for solutions of uni-univalent electrolytes. Hepler's semiemprirical equation has been used to split ionic partial molal volumes into geometric and electrostrictive contributions. The results obtained in this work confirm the conclusion of our previous studies, namely, that the contribution of electrostriction is essentially determined by the properties of that layer of atoms, 0.3 to 0.4 nm thick, in contact with the ion and by the degree of steric hindrance of the poles of the dipole of the solvent molecule. On the other hand, the geometric contribution depends on the size of the solvent molecule and also on the arrangement of the solvent molecules about the ions. It is shown that the geometric contribution to the partial molal volume of ions is largely increased when ions cannot come close enough to the poles of the solvent-molecule dipole, owing to steric hindrance.  相似文献   

3.
Proton NMR spectroscopy was used to study the complexation reaction of 18-crown-6 (18C6) with K+, Rb+ and Tl+ ions in a number of binary dimethyl sulfoxide-nitrobenzene mixtures. In all cases, the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average 1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of dimethyl sulfoxide in the mixed solvent. It was found that, in all solvent mixtures used, Rb+ ion forms the most stable complex with 18-crown-6 in the series.  相似文献   

4.
The rate constants of alkaline fading of a number of triphenylmethane (TPM) dyes including methyl green (ME2+), brilliant green (BG+), fuchsin acid (FA2?), and bromophenol blue (BPB2?) were obtained in aqueous binary mixtures of 2‐propanol (protic solvent) and dimethyl sulfoxide (DMSO) (aprotic solvent) at different temperatures. It was observed that the reaction rate constants of BG+ and ME2+ increased and those of FA2? and BPB2? decreased with an increase in weight percentages of aqueous 2‐propanol and DMSO binary mixtures. 2‐Propanol and DMSO interact with the used TPM molecules through hydrogen bonding and ion–dipole interaction, respectively, in addition to their hydrophobic interaction with TPM dyes. The fundamental rate constants of a fading reaction in these solutions were obtained by the SESMORTAC model. Also, the effect of electric charge and substituent groups of a number of TPM dyes on their alkaline fading rate was studied.  相似文献   

5.
General trends in the variation of thermodynamic parameters of complex formation of crown ethers with d-metal ions in binary nonaqueous solvent mixtures were determined. An equation was proposed for predicting variation of the stability of coordination compounds upon replacement of one nonaqueous solvent by another on the basis of the change in the Gibbs energy of solvation of the central ion. Calculation of the Gibbs energies for the formation of the [Ag18C6]+ ion in acetonitrile and a number of nonaqueous solvents confirmed the predictive ability of the proposed equation.  相似文献   

6.
The correlated, size-consistent, ab initio effective valence-shell dipole operator (μv) method is used to calculate dipole moments and transition dipole moments of the CH molecule and transition dipole moments of the CH+ ion as a function of internuclear distance. The dipole and transition dipole moments computed here compare well with those of other accurate ab initio methods. The transition dipole moments are then used to calculate oscillator strengths and radiative lifetimes for the AX and BA transitions of the CH+ ion and the AX transition of the CH molecule. Comparisons are made with the best available theoretical and experimental lifetimes. Finally, the CH ground-state dipole moment function is used to evaluate overtone intensities and to examine simple models of the CH overtone intensities in polyatomic molecules.  相似文献   

7.
Solubilities in MeOH--H2O mixtures at 298.2 K are reported for a number of salts of mono- and bi-nuclear cobalt(III) complexes. From these solubilities and published single ion transfer chemical potentials, on the TPTB (Ph4P+ = BPh 4 ) assumption, transfer chemical potentials have been derived for these mono- and bi-nuclear cobalt(III) complexes. The results and trends are discussed in relation to those for other complexes and ions in these binary aqueous solvent mixtures.  相似文献   

8.
The relative metal ion (Ni+ and Co+) affinities of 14 alkanenitriles, alkenenitriles and benzonitrile were estimated using Cooks' kinetic method in a fast atom bombardment mass spectrometer. The results are compared with proton affinities, affinities for other metal ions, two-ligand dissociation enthalpies and the dipole moments of the nitriles. The RCN? Co+ bond is found to be close to the RCN? Ni+ bond but weaker than the RCN? Al+ bond. The effective temperature (T) of the metal-bound dimer ions falls in the range 298 K < T < 400 K.  相似文献   

9.
Limiting molar conductances λo of potassium hydroxide in 2 to 25 mol%tert-butyl alcohol (TBA)-water mixtures were determined at 25°C as a function of pressure up to 196 MPa. λo’s of KOH in (2.5 to 15 mol%) 1,4-dioxane-water mixtures at 25°C and 1 atm were also determined. The excess conductance λ o e of the OH- ion estimated as [λ o e (OH-) = λo(KOH) - λo(KCl)] decreased with an increase in the TBA or dioxane content, as did the excess proton conductance λ o e (H+) [λ o e (H+) = λO(HC1) - λo(KCl)]. Although λ o e (OH-) is smaller than λ o e (H+) at all solvent compositions studied, the rate of decrease in λ o e with organic content is larger for the OH- ion than for the H3O+ ion in both solvent mixtures except in the water-rich region of TBA-water mixtures. λ o e (OH-) increases with pressure more strongly in TBA-water mixtures than in pure water, and the rate of increase in λ o e (OH-) with pressure has a maximum at 5 mol% of TBA. These results are discussed in terms of the difference in stability of hydrogen bonds between the OH- or the H3O+ ion and water molecules and the increase in repulsive forces due to the orientation [H-O O-H] of water molecules in the mixtures.  相似文献   

10.
The concentration dependence of molar conductance for 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium hexafluorophosphate in binary mixtures of acetonitrile + methanol was investigated to explore the ion association behavior of imidazolium based ionic liquids. The limiting molar conductance $(\Uplambda_{m}^{0})$ ( Λ m 0 ) , association constants (K a 0 ) and the maximal distance between the oppositely charged ions in ion pairs (R ij ) in the mixed solvent mixtures were evaluated following the framework of Barthel’s low-concentration chemical model. The investigated ILs display opposing trends in ion association behavior with change in solvent composition of acetonitrile + methanol binary mixtures. The results are discussed in light of ionic liquid and solvent specific ion?solvent and ion?ion interactions in the mixed solvent systems.  相似文献   

11.
Conductance measurements are reported for LiPi, NaPi, KPi, RbPi, CsPi, Bu4NPi, Bu4NBr, Bu4NClO4, Bu4NNO3, and Bu4NBBu4 at 25°C in -butyrolactone-sulfolane mixtures. In these mixtures of solvents that are practically homomorphous, isodielectic and with comparable dipole moments, the ion pair association and ionic mobilities of large ions conform to the expectations of the primitive model. Electrolytes containing lithium or sodium ions show anomalies indicating that other factors besides shape, dipole moment, and polarizability of the solvent molecules are involved in the association and transport processes of these ions.  相似文献   

12.
Proton NMR was used to study the complexation reaction of Li+ and Na+ ions with 15-Crown-5 (15C5) in a number of binary acetonitrile (AN)-nitrobenzene (NB) mixtures at different temperatures. In all cases, the exchange between free and complexed 15C5 was fast on the NMR timescale and only a single population average 1H signal was observed. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift mole ratio data. There is an inverse relationship between the complex stability and the amount of AN in the solvent mixtures. The enthalpy and entropy values for the complexation reaction were evaluated from the temperature dependence of the formation constants. In all the solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized. Finally, the experimental results were compared with theoretical ones that were obtained from molecular modeling methods. Based on our results, it is most probable that Li+-15C5 in solvent stays in a rather nesting complex form with greater LogKf values, but Na+-15C5 forms a complete perching complex form with lower LogKf values.  相似文献   

13.
The dielectric constant and conductivity of dilute solutions of tetraisoamylammonium nitrate in chlorobenzene are measured between –34.6° and 99.0°C to give association constants for the formation of ion pairs (K A) and triple ions, and electric dipole moments. The quantityK A as a function of temperature is reproduced by the Denison-Ramsey-Fuoss treatment for unolarized ion pairs [Eq. (2)] with a distance of closest approach of 4.90 Å. The dielectric data are reproduced by Onsager's equation with an inherent (gas-phase) dipole moment of the ion pairs of 14.2±0.3 D. Other methods of calculation lead to consistent dipole moments, confirming that the mutual polarization of the ions is important. The energetics of ionic association is considered on the basis that the ion pair may be treated as a polarizable dipole in a spherical cavity.  相似文献   

14.
The enthalpies of solution of Co(II) and Na(I) trifluoromethanesulfonates (triflates) in N,N-dimethylformamide (DMF)–methanol (MeOH) mixtures have been measured over the whole range of solvent composition. From these data the enthalpies of transfer of Co(II) and triflate ions from methanol to the mixed solvent have been determined usingliterature values of the enthalpies of transfer of the Na+ ion. The results have been analyzed by means of the theory of preferential solvation. The analysis revealed the preference of DMF for solvating the Co(II) ion in the MeOH-rich region of solvent composition and the lack of preference of any component in the DMF-rich region. Visible absorption spectra of the Co(II) ion in DMF–MeOH mixtures have been also measured in the whole range of solvent composition and analyzed using the partial least-squares method. The mean composition of the solvation sphere of the Co(II) ion versus solvent composition has been determined on the basis of both analyses. The results were found to be consistent with each other and with those obtained previously from FT-IR spectra.  相似文献   

15.
Inter- and intramolecular nuclear magnetic quadrupole relaxation measurements have been used to study the system methanol (CH3OH)+ N,N-dimethylformamide (DMF)+NaI at 25°C. The dynamic behavior of the solvent molecules was investigated, throughout the composition range of the binary mixtures, by means of 14 N relaxation of DMF and 2 H of methanol-d 1 (CH 3 OD). The intermolecular relaxation of 23 Na+ in pure DMF was used to obtain information about the symmetry of the solvent electric dipole arrangement in the solvation sphere of the ion. The investigation of preferential solvation around Na+ in the binary mixtures was carried out by means of 23 Na+ relaxation measurements using, for the first time, both the CH 3 OH/CD 3 OD and the DMF/DMF-d 7 dynamic isotope effect. The results show that, throughout the composition range, there is preferential solvation by DMF. Furthermore, the use of the isotope effects of both components allowed for the first time a basic check of the reliability of the method since we obtained two independent sets of data for the composition of the Na+ solvation shell in the mixtures. The consistency of the two separate data sets demonstrates that the application of the dynamic isotope effect represents a powerful tool in preferential solvation studies.  相似文献   

16.
The binding sites and consecutive binding constants of alkali metal ions, (M+ = Na+, K+, Rb+, and Cs+), to thrombin-binding aptamer (TBA) DNA were studied by Fourier-transform ion cyclotron resonance spectrometry. TBA-metal complexes were produced by electrospray ionization (ESI) and the ions of interest were mass-selected for further characterization. The structural motif of TBA in an ESI solution was checked by circular dichroism. The metal-binding constants and sites were determined by the titration method and infrared multiphoton dissociation (IRMPD), respectively. The binding constant of potassium is 5–8 times greater than those of other alkali metal ions, and the potassium binding site is different from other metal binding sites. In the 1:1 TBA-metal complex, potassium is coordinated between the bottom G-quartet and two adjacent TT loops of TBA. In the 1:2 TBA—metal complex, the second potassium ion binds at the TGT loop of TBA, which is in line with the antiparallel G-quadruplex structure of TBA. On the other hand, other alkali metal ions bind at the lateral TGT loop in both 1:1 and 1:2 complexes, presumably due to the formation of ion-pair adducts. IRMPD studies of the binding sites in combination with measurements of the consecutive binding constants help elucidate the binding modes of alkali metal ions on DNA aptamer at the molecular level.  相似文献   

17.
Proton NMR spectroscopy was used to study the complexation reaction between lithium ion and 12-crown-4, 15-crown-5 and 18-crown-6 in a number of binary acetonitrile-nitrobenzene mixtures. In all cases the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of acetonitrile in the mixed solvent. It was found that, in all solvent mixtures used, 15-crown-5 forms the most stable complex with Li+ ion in the series.  相似文献   

18.
The heats of mixing of aqueous copper(II) nitrate and sodium β-alaninate with water-ethanol solvents were measured thermochemically at 298.15 K. The enthalpies of transfer of the Ala alaninate anion and Cu2+ ion in binary water-ethanol mixtures were calculated. The effect of the composition of the binary solvent on the enthalpy of formation of [CuAla]+ and the enthalpies of solvation of the ligand, central ion, and complex ion was studied.  相似文献   

19.
Conductivity data of sodium chloride in binary mixtures of water and 1,4-dioxanefrom 5 to 35°C were measured, covering an electrolyte concentration range upto the limit of solubility in the solvent mixtures and up to 5 mol-dm–3 inpure water. Data analysis is based on the mean spherical approximation (MSA).Comparison is made with the data representation by the empirical Casteel-Amisequation. The association constants of the MSA are compared with those fromchemical model calculations at low concentrations (lcCM).  相似文献   

20.
Abstract

The exchange kinetics of the lithium ion with cryptand C222 were studied in acetonitrile-nitromethane mixtures by lithium-7 NMR line-shape analysis. In all solvent mixtures used, and over the entire temperature range studied, the chemical exchange of the Li+ ion between the solvated and complexed sites was found to occur via a bimolecular mechanism. The activation parameters Ea, δH?, δS? and δG? for the exchange have been determined. The free energy barrier for the exchange process appears to be nearly independent of the binary mixture composition. The results confirm the preferential solvation of the lithium ion with acetonitrile in the binary mixed solvent systems used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号