首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the detection of unlabeled and 15N2‐labeled l ‐tryptophan (l ‐Trp), l ‐kynurenine (l ‐Kyn), serotonin (5‐HT) and quinolinic acid (QA) in human and rat plasma by GC/MS is described. Labeled and unlabeled versions of these four products were analyzed as their acyl substitution derivatives using pentafluoropropionic anhydride and 2,2,3,3,3‐pentafluoro‐1‐propanol. Products were then separated by GC and analyzed by selected ion monitoring using negative ion chemical ionization mass spectrometry. l ‐[13C11, 15N2]‐Trp, methyl‐serotonin and 3,5‐pyridinedicarboxylic acid were used as internal standards for this method. The coefficients of variation for inter‐assay repeatability were found to be approximately 5.2% for l ‐Trp and 15N2‐Trp, 17.1% for l ‐Kyn, 16.9% for 5‐HT and 5.8% for QA (n = 2). We used this method to determine isotope enrichments in plasma l ‐Trp over the course of a continuous, intravenous infusion of l ‐[15N2]Trp in pregnant rat in the fasting state. Plasma 15N2‐Trp enrichment reached a plateau at 120 min. The free Trp appearance rate (Ra) into plasma was 49.5 ± 3.35 µmol/kg/h. The GC/MS method was applied to determine the enrichment of 15N‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA concurrently with the concentration of non‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA in plasma. This method may help improve our understanding on l ‐Trp metabolism in vivo in animals and humans and potentially reveal the relative contribution of the four pathways of l ‐Trp metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Zhang  Zhongyi  Xiao  Huayun  Zheng  Nengjian  Gao  Xiaofei  Zhu  RenGuo 《Chromatographia》2016,79(17):1197-1205

Individual free amino acid δ15N values in plant tissue reflect the metabolic pathways involved in their biosynthesis and catabolism and could thus aid understanding of environmental stress and anthropogenic effects on plant metabolism. In this study, compound-specific nitrogen isotope analysis of amino acid by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was carried out to determine individual free amino acid δ15N values. High correlations were observed between the δ15N values obtained by GC-C-IRMS and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) determinations, and the mean precision measured was better than 1 ‰. Cation-exchange chromatography was employed to purify the sample, and the difference between prior to and following passage through the resin was within 1 ‰. The amino acid δ15N values of plant leave samples following incubation in 15N-nitrate at different time points were determined. A typical foliar free amino acid 15N-enrichment pattern was found, and glutamine was the most rapidly labeled amino acid; other amino acids derived from the GS-GOGAT cycle were also enriched. The pyruvate family amino acids were labeled less quickly followed by the aromatic amino acids. This study highlighted that amino acid metabolism pathways had a major effect on the δ15N values. With the known amino acid metabolism pathways and δ15N values determined by the presented method, the influence of various external factors on the metabolic cycling of amino acid can be understood well.

  相似文献   

3.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N‐phenylpropanamide. 1‐(2‐Phenylethyl)‐1,2,3,6‐tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS3) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium‐labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Methylation is one of the important posttranslational modifications of biological systems. At the metabolite level, the methylation process is expected to convert bioactive compounds such as amino acids, fatty acids, lipids, sugars, and other organic acids into their methylated forms. A few of the methylated amino acids are identified and have been proved as potential biomarkers for several metabolic disorders by using mass spectrometry–based metabolomics workstation. As it is possible to encounter all the N‐methyl forms of the proteinogenic amino acids in plant/biological systems, it is essential to have analytical data of all N‐methyl amino acids for their detection and identification. In earlier studies, we have reported the ESI‐MS/MS data of all methylated proteinogenic amino acids, except that of mono‐N‐methyl amino acids. In this study, the N‐methyl amino acids of all the amino acids ( 1 ‐ 21 ; including one isomeric pair) were synthesized and characterized by ESI‐MS/MS, LC/MS/MS, and HRMS. These data could be useful for detection and identification of N‐methyl amino acids in biological systems for future metabolomics studies. The MS/MS spectra of [M + H]+ ions of most N‐methyl amino acids showed respective immonium ions by the loss of (H2O, CO). The other most common product ions detected were [MH‐(NH2CH3]+, [MH‐(RH)]+ (where R = side chain group) ions, and the selective structure indicative product ions due to side chain and N‐methyl group. The isomeric/isobaric N‐methyl amino acids could easily be differentiated by their distinct MS/MS spectra. Further, the MS/MS of immonium ions inferred side chain structure and methyl group on α‐nitrogen of the N‐methyl amino acids.  相似文献   

5.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

6.
Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide‐modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time‐of‐flight mass spectrometer, and a multi‐stage MS/MS analysis was conducted using a triple quadrupole‐linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H]3+ species were observed in the single‐stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide‐related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N‐terminus part of the gemini surfactants. In addition, a charge‐directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α‐amino‐ε‐caprolactam ion and its complimentary C‐terminus ion that contains quaternary amines. MS/MS and MS3 analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Increasing interest in the ability of plants to take up amino acids has given rise to questions on the accuracy of the commonly used bulk method to measure and calculate amino acid uptake. This method uses bulk measurements of 13C and 15N enrichment in plant tissues after application of dual‐labelled amino acids but some authors have recommended the use of compound‐specific stable isotope (CSI) analysis of the plants' amino acids instead. However, there has never been a direct evaluation of both methods. We conducted a field study applying dual‐labelled (13C, 15N) amino acids (glycine, valine, tyrosine and lysine) to soil of a Plantago lanceolata monoculture. Root and shoot samples were collected 24 h after label application and the isotope composition of the plant tissues was investigated using bulk and CSI measurements. Enrichment of 13C in the case of CSI measurements was limited to the applied amino acids, showing that no additional 13C had been incorporated into the plants' amino acid pool via the uptake of tracer‐derived C‐fragments. Compared with this rather conservative indicator of amino acid uptake, the 13C enrichment of bulk measurements was 8, 5, 1.6 and 6 times higher for fine roots, storage roots, shoot and the whole plant, respectively. These findings show that the additional uptake of tracer‐derived C‐fragments will result in a considerable overestimation of amino acid uptake in the case of bulk measurements. We therefore highly recommend the use of CSI measurements for future amino acid uptake studies due to their higher accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this study was to produce intrinsically and uniformly doubly (15)N-(13)C-labeled proteins. These proteins can be used as intrinsic tracers of dietary amino acids, both α-amino groups and carbon skeletons, during postprandial metabolic utilization. Two (Rhodes) laying hens were fed for 16 days with a standard poultry diet supplemented with 0, 0.2% or 0.4% of a mixture of 20 doubly (15)N-(13)C-labeled AAs. A third hen was given a non-enriched diet, as the control. The eggs laid were collected over 24 days, from 3 days before to 4 days after supplementation. The (15)N and (13)C enrichments in proteins from white and yolk were measured by EA-IRMS and GC-C-IRMS for enrichment in individual amino acids. After 10 days of supplementation, the (15)N enrichment reached an isotopic plateau at 1500 to 3000 ‰, depending on the supplementation level, in both white and yolk while the (13)C enrichment was 220 to 650 ‰ in white and was 100 to 250 ‰ in yolk. The (15)N enrichment was similar among the amino acids, except for the aromatic ones in which the enrichment was lower. The δ(13)C values were variable among amino acids in both white and yolk, ranging from 77 ‰ for tyrosine to 555 ‰ for proline with the 0.2 % supplementation level. In conclusion, the incorporation of 0.2 % labeled amino acids in the hen diet allowed us to achieve sufficient enrichment for metabolic studies. However, due to the non-homogeneity of the (13)C labeling, adequate (13)C enrichment of individual amino acids must be considered depending on the investigated metabolic pathway.  相似文献   

9.
The fragmentation pathways of both protonated and sodiated pentacoordinate spirobicyclic aminoacylphosphoranes (P‐AAs) have been studied by electrospray ionization multi‐stage mass spectrometry (ESI‐MSn) in positive mode. The possible pathways and their mechanisms are elucidated through the combination of ESI‐MS/MS, isotope (15 N and 2H) labeling and high‐resolution Fourier transform ion cyclotron resonance (FTICR)‐MS/MS. The relative Gibbs free energies (ΔG) of the product ions and possible fragmentation pathways are estimated at the B3LYP/6‐31 G(d) level of theory. The theoretical calculations show that both protonated and sodiated P‐AAs would quickly fragment before Berry pseudorotation. For protonated P‐AAs, they have different tendencies to P–O or P–N bond cleavage. For sodiated P‐AAs, the P–N bond is easier to cleave and produces the tetracoordinated phosphorus ion H. These results to some extent may give a clue to the chemistry of the active sites of phosphoryl transfer enzymes and will enrich the gas‐phase ESI‐MS ion chemistry of pentacoordinate phosphoranes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A general method for the determination of the enrichment of isotopically labelled molecules by mass spectrometry (MS) is described. In contrast to other published procedures, the method described here takes into account and corrects for measurement errors such as the contribution at M ? 1 due to loss of hydrogen or lack of spectral resolution and provides an uncertainty value for the determined enrichment. The general procedure requires the following steps: (1) evaluation of linearity in the mass spectrometer by injecting the natural abundance compound at different concentration levels, (2) determination of the purity of the mass cluster using the natural abundance analogue, (3) calculation of the theoretical isotope composition of the labelled compound using different tentative isotope enrichments, (4) calculation of ‘convoluted’ isotope distributions for the labelled compound taking into account the purity of the mass cluster determined with the natural abundance analogue and (5) comparison of the isotope distributions measured for the labelled compound with those calculated for different isotope enrichments using linear regression. The method was applied to a series of commercially available 13C‐ and 2H‐labelled compounds and to a suite of singly 13C‐labelled β2‐agonist prepared in‐house both by gas chromatography (GC)–MS, GC–tandem MS (MS/MS) and liquid chromatography–MS/MS with satisfactory results. It was observed that the main uncertainty source for the isotope enrichment was the uncertainty in the purity of the measured cluster as determined with the natural abundance compound. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The pyrylium group is a selective reagent for ε‐amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N‐hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py‐1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py‐1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N‐terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py‐1 recommends itself for N‐terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a‐ and b‐type ion series were observed for N‐terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red.  相似文献   

12.
Precise measurement of low enrichment of stable isotope labeled amino‐acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 h intravenous infusion of L‐[ring‐13C6]phenylalanine and a bolus dose of L‐[ring‐13C6]phenylalanine in a mouse were utilized. Liquid chromatography tandem mass spectrometry (LC/MS/MS), gas chromatography (GC) MS/MS and GC/MS were compared to the GC‐combustion‐isotope ratio MS (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring‐13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 molar percent excess. As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra‐assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter‐assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. The muscle sample sizes required to obtain these results were 8 µg, 0.8 µg, 3 µg and 3 µg for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L‐[ring‐13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Escherichia coli glucosamine-6-phosphate synthase (GlmS) is a dimeric enzyme from the glutamine-dependent amidotransferases family, which catalyses the conversion of D-fructose-6-phosphate (Fru6P) and glutamine (Gln) into D-glucosamine-6-phosphate (GlcN6P) and glutamate, respectively. Extensive X-ray crystallography investigations have been reported, highlighting the importance of the dimeric association to form the sugar active site as well as significant conformational changes of the protein upon substrate and product binding. In the present work, an approach based on time-resolved noncovalent mass spectrometry has been developed to study the dynamics of GlmS subunit exchange. Using 14N versus 15N labeled proteins, the kinetics of GlmS subunit exchange was monitored with the wild-type enzyme in the presence of different substrates and products as well as with the protein bearing a key amino acid mutation specially designed to weaken the dimer interface. Determination of rate constants of subunit exchange revealed important modifications of the protein dynamics: while glutamine, glutamate, and K603A mutation accelerates subunit exchange, Fru6P and GlcN6P totally prevent it. These results are described in light of the available structural information, providing additional useful data for both the characterization of GlmS catalytic process and the design of new GlmS inhibitors. Finally, time-resolved noncovalent MS can be proposed as an additional biophysical technique for real-time monitoring of protein dynamics.  相似文献   

14.
We compare a new simplified 2H enrichment mass isotopomer analysis (MIA) against the laborious hexamethylentetramine (HMT) method to quantify the contribution of gluconeogenesis (GNG) to total glucose production (GP) in calves. Both methods are based on the 2H labeling of glucose after in vivo administration of deuterium oxide. The 2H enrichments of plasma glucose at different C‐H positions were measured as aldonitrile pentaacetate (AAc) and methyloxime‐trimethylsilyl (MoxTMS) derivatives or HMT by gas chromatography/mass spectrometry (GC/MS). Two pre‐ruminating fasted Holstein calves (51 kg body mass, BM, age 7 days) received two oral bolus doses of 2H2O (10 g/kg BM, 70 atom% 2H) at 7:00 h and 11:00 h after overnight food withdrawal. Blood samples for fractional GNG determination were collected at ?24 and between 6 and 9 h after the first 2H2O dose. The ratio of 2H enrichments C5/C2 represents the contribution of GNG to GP. The 2H enrichment at C2 was calculated based on the ion fragments at m/z 328 (C1‐C6) ‐ m/z 187 (C3‐C6) of glucose AAc. The 2H enrichment at C5 was approximated either by averaging the 2H enrichment at C5‐C6 using the ion fragment of glucose MoxTMS at m/z 205 or by conversion of the C5 of glucose into HMT. The fractional GNG calculated by the C5‐C6 average 2H enrichment method (41.4 ± 6.9%) compared to the HMT method (34.3 ± 11.4%) was not different (mean ± SD, n = 6 replicates). In conclusion, GNG can be estimated with less laborious sample preparation by means of our new C5‐C6 average 2H enrichment method using AAc and MoxTMS glucose derivatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A 15 kDa rice Bowman‐Birk inhibitor from fast elongating coleoptiles has been purified and identified using partial N‐terminal sequence, LC‐MS, and MALDI‐TOF MS as a 133 amino acid polypeptide (BBIrc 1). The kinetic study shows this protease inhibitor displays competitive inhibition toward trypsin with Ki of 4.0 × 10?7 M and non‐competitive inhibition toward α‐chymotrypsin with Ki of 9.3 × 10?6 M. The Western blotting results of the anti‐sera raised against this 15 kDa protein showed that this anti‐serum recognized two BBI proteins with molecular size around 15 kDa (BBIrc 1) and 25 kDa (BBIrc2) and the quantity of the expression of 15 kDa was nearly constant under both aerobic and hypoxia conditions; however, the 25 kDa expression was greatly up‐regulated when the fast elongating coleoptiles were transferred from hypoxia conditions to the aerobic conditions. The results indicate that the expression pattern of BBIs proteins correlated to the developmental stage in terms of morphological changes. The partial N‐terminal sequence of the first 9 amino acids of 25 kDa was AEAPPRPPK, which is the same as the amino acid sequence of 37th to 45th of RBBI3‐1 and LC‐MS study shows that several mass fragments fit to RBBI3‐1. The 25 kDa protein also shows specific binding to bovine trypsin. This expression pattern demonstrates for the first time that environmental factor, oxygen, can select and enhance specific BBI gene expression. The results of this study suggest BBI proteins might play multiple biological functions inside rice coleoptiles.  相似文献   

16.
Mass isotopomer analysis is an important technique to measure the production and flow of metabolites in living cells, tissues, and organisms. This technique depends on accurate quantifications of different mass isotopomers using mass spectrometry. Constructing calibration curves using standard samples is the most universal approach to convert raw mass spectrometry measurements into quantitative distributions of mass isotopomers. Calibration curve approach has been, however, of very limited use in comprehensive analyses of biological systems, mainly suffering from the lack of extensive range of standard samples with accurately known isotopic enrichment. Here, we present a biological method capable of synthesizing specifically labeled amino acids. These amino acids have well‐determined and estimable mass isotopomer distributions and thus can serve as standard samples. In this method, the bacterium strain Methylobacterium salsuginis sp. nov. was cultivated with partially 13C‐labeled methanol as the only carbon source to produce 13C‐enriched compounds. We show that the mass isotopomer distributions of the various biosynthesized amino acids are well determined and can be reasonably estimated based on proposed binomial approximation if the labeling state of the biomass reached an isotopic steady state. The interference of intramolecular inhomogeneity of 13C isotope abundances caused by biological isotope fractionation was eliminated by estimating average 13C isotope abundance. Further, the predictions are tested experimentally by mass spectrometry (MS) spectra of the labeled glycine, alanine, and aspartic acid. Most of the error in mass spectrometry measurements was less than 0.74 mol% in the test case, significantly reduced as compared with uncalibrated results, and this error is expected to be less than 0.4 mol% in real experiment as revealed by theoretical analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The binary mixtures of 7 hexoses and 20 amino acids were investigated by electrospray ionization ion trap mass spectrometry (ESI‐ITMS). The adduct ions of the amino acid and the hexose were detected for 12 amino acids but not for the other 8 amino acids which are basic acidic amino acids and amides. The ions of amino acid–hexose complexes were further investigated by tandem mass spectrometry (MS/MS), and some of them just split easily into two parts whereas the others gave rich fragmentation, such as the complex ions of isoleucine, phenylalanie, tyrosine, and valine. We found that hexoses could be complexed by two molecules of valine but only by one molecule of the other amino acids. Among seven kinds of valine–hexose complexes coordinated by potassium ion, the MS2 spectra of the ion at m/z 453 yielded unambiguous differentiation. And the fragmentation ions are sensitive to the stereochemical differences at the carbon‐4 of hexoses in the complexes, as proved by the MS2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Ogrel'  A.  Rimavi  V.  Raap  J.  Shvets  V. 《Russian Journal of Organic Chemistry》2001,37(4):475-479
Approach was developed to a preparative synthesis of isotope-labeled aminoacids contained in servamycin IIB antibiotic. Glutamines labeled with 15N, 13N, and 2H were prepared in 70-80% yield starting with the corresponding labeled glutamic acids under catalysis with the glutamine synthetase enzyme. 1 5N-2-aminoisobutanoic acid and 15N-isovaline were obtained by Strecker method in 65 and 31% yields respectively. All compounds synthesized were identified and characterized by NMR spectroscopy.  相似文献   

19.
Four pairs of positional isomers of ureidopeptides, FmocNH‐CH(R1)‐φ(NH‐CO‐NH)‐CH(R2)‐OY and FmocNH‐CH(R2)‐φ(NH‐CO‐NH)‐CH(R1)‐OY (Fmoc = [(9‐fluorenyl methyl)oxy]carbonyl; R1 = H, alkyl; R2 = alkyl, H and Y = CH3/H), have been characterized and differentiated by both positive and negative ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). The major fragmentation noticed in MS/MS of all these compounds is due to ? N? CH(R)? N? bond cleavage to form the characteristic N‐ and C‐terminus fragment ions. The protonated ureidopeptide acids derived from glycine at the N‐terminus form protonated (9H‐fluoren‐9‐yl)methyl carbamate ion at m/z 240 which is absent for the corresponding esters. Another interesting fragmentation noticed in ureidopeptides derived from glycine at the N‐terminus is an unusual loss of 61 units from an intermediate fragment ion FmocNH = CH2+ (m/z 252). A mechanism involving an ion‐neutral complex and a direct loss of NH3 and CO2 is proposed for this process. Whereas ureidopeptides derived from alanine, leucine and phenylalanine at the N‐terminus eliminate CO2 followed by corresponding imine to form (9H‐fluoren‐9‐yl)methyl cation (C14H11+) from FmocNH = CHR+. In addition, characteristic immonium ions are also observed. The deprotonated ureidopeptide acids dissociate differently from the protonated ureidopeptides. The [M ? H]? ions of ureidopeptide acids undergo a McLafferty‐type rearrangement followed by the loss of CO2 to form an abundant [M ? H ? Fmoc + H]? which is absent for protonated ureidopeptides. Thus, the present study provides information on mass spectral characterization of ureidopeptides and distinguishes the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A dynamic combinatorial library of lanthanide complexes was prepared to develop induced‐circular‐dichroism (CD) chirality probes. It totaled 168 combinations of coordinative N‐aromatic chromophores, trivalent lanthanide centers, and guest amino acids. Eu3+ and Tb3+ complexes prepared with quinolinecarboxylic acid were particularly effective as induced‐CD chirality probes for selective alanine detection, whereas a Yb3+ complex with terpyridine exhibited glutamine selectivity. The former two complexes highly preferred alanine to the corresponding amine, ester, amino alcohol, and carboxylic acid derivatives. As such, the present combinatorial screening of a dynamic lanthanide complex library has led to a new series of induced‐CD chirality probes for specific amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号