首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using glycerol (H?gly) as a primary ligand, the decanuclear aggregate [Mn(II)?Mn(III)?Dy?(μ?-OH)?(Hgly)?(H?gly)?-(PhCO?)??(H?O)?]·10CH?CN (1) has been synthesised; it has a structure built up from two Mn?Dy? heterocubane units linked through a central Dy?(μ-benzoate)? paddle-wheel dimer and shows slow relaxation of its magnetisation.  相似文献   

2.
Reactions of 2,6-diacetylpyridine dioxime (dapdoH?) with Mn(NO?)? or Mn(SO?CF?)? under a variety of conditions or co-ligands yield compounds with the formula [Mn?O?(OMe)?(dapdo)?(dapdoH)?](X)? in which X = NO?? (1) or SO?CF?? (2), [Mn?O?(dapdo)?(NO?)?]·H?O (3) and [Mn(dapdoH?)(N?)?](n) (4). Compounds 1, 3 and 4 were structurally characterized and equivalent structures for 1 and 2 were inferred from spectroscopic and analytical results. Compounds 1 and 2 consist of hexanuclear Mn?(II)Mn?(III) complexes whereas 3 consists of an octanuclear Mn?(II)Mn?(III) cluster in which the manganese atoms exhibit a rare bicapped elongated octahedral topology. Compound 4 consists of a 1D system bridged by double end-on azido ligands. Variable temperature magnetic studies were performed between 2-300 K, confirming the ground state S = 5 for 1 and 2, S = 0 for 3 and ferromagnetic response for 4.  相似文献   

3.
The synthesis, crystal structure, and magnetic properties of three new manganese(III) clusters are reported, [Mn 3(mu 3-O)(phpzH) 3(MeOH) 3(OAc)] (1), [Mn 3(mu 3-O)(phpzMe) 3(MeOH) 3(OAc)].1.5MeOH (2), and [Mn 3(mu 3-O)(phpzH) 3(MeOH) 4(N 3)].MeOH (3) (H 2phpzH = 3(5)-(2-hydroxyphenyl)-pyrazole and H 2phpzMe = 3(5)-(2-hydroxyphenyl)-5(3)-methylpyrazole). Complexes 1- 3 consist of a triangle of manganese(III) ions with an oxido-center bridge and three ligands, phpzR (2-) (R = H, Me) that form a plane with the metal ions. All the complexes contain the same core with the general formula [Mn 3(mu 3-O)(phpzR) 3] (+). Methanol molecules and additional bridging ligands, that is, acetate (complexes 1 and 2) and azide (complex 3), are at the terminal positions. Temperature dependent magnetic susceptibility studies indicate the presence of predominant antiferromagnetic intramolecular interactions between manganese(III) ions in 1 and 3, while both antiferromagnetic and ferromagnetic intramolecular interactions are operative in 2.  相似文献   

4.
The reaction of Mn(O?CMe)?·2H?O with Me-saoH? (Me-saoH? = 2-hydroxyphenylethanone oxime) in MeCN forms the complex [Mn(III)?(Me-sao)?(Me-saoH)?] (1) in good yields. Replacing Me-saoH? with Naphth-saoH? (Naphth-saoH? = 2-hydroxy-1-napthaldoxime) in the presence of CH?ONa forms the complex [Mn(III)?(Naphth-sao)?(Naphth-saoH)?] (2) in low yields, while the reaction between Mn(ClO?)?·6H?O, Et-saoH? (Et-saoH?= 2-hydroxypropiophenone oxime) and NBu?OH in MeCN gives the complex [Mn(III)?(Et-sao)?(Et-saoH)?] (3) in moderate yields. All three tetrametallic cages exclusively contain Mn(III) centres arranged in a "cube"-like topology, in which the metal centres are connected by -N-O(oximate) groups. The magnetic properties of 1-3 are near identical, revealing the presence of only ferromagnetic interactions between the metal ions leading to high-spin ground states of S = 8. The complexes display frequency dependent out-of-phase signals in ac susceptibility studies and, in the case of 1 single-molecule magnetism has been observed by means of single-crystal hysteresis loop measurements.  相似文献   

5.
The synthesis and characterisation of three new mixed-valent manganese clusters [Mn(II)?Mn(III)??O??(OH)?(tea)?(chp)?]·6MeOH·4H?O (1), [Mn(II)?Mn(III)?(teaH)?(teaH?)?(tpaa)?(F)?]·2Et?O·4MeCN (2) and [Mn(II)?Mn(III)?(teaH)?(teaH?)?(2-bpca)?(F)?]·4MeCN (3) are reported. They were obtained by the reaction of simple manganese salts with triethanolamine (teaH?), triethylamine (NEt?) and the appropriate co-ligand. In the case of 1, 6-chloro-2-hydroxypyridine (Hchp) was used, for 2, triphenylacetic acid (tpaa) and 3, 2-biphenylcarboxylic acid (2-bpca). The core of 1 is a Mn?? supertetrahedron, while the cores of 2 and 3 are identical and have distorted ring-like topologies. Variable-temperature, solid-state DC and AC magnetic studies were performed on 1-3 in the 2-300 K (DC) and 2-18 K (AC) ranges. Cluster 1 has a S = 9 ground state with excited S states, larger in value than 9, close in energy. No SMM features were apparent in 1. In contrast, clusters 2 and 3, with S = 12 or 13 ground states, and with excited S levels of lower value than 12 lying close in energy, do show SMM features, albeit below 2 K in their AC out-of-phase, frequency dependent data.  相似文献   

6.
The syntheses, single crystal X-ray structures, and magnetic properties of the homometallic μ?-oxo trinuclear clusters [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](ClO?) (1) and [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)?](NO?) (2) are reported (Ad = adamantane). The persistence of the trinuclear structure within 1 and 2 in CD?Cl? and C?D?Cl? solutions in the temperature range 190-390 K is demonstrated by 1H NMR. An equilibrium between the mixed pyridine clusters [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)(3-x)(4-Phpy)(x)](NO?) (x = 0, 1, 2, 3) with a close to statistical distribution of these species is observed in CD?Cl? solutions. Variable-temperature NMR line-broadening made it possible to quantify the coordinated/free 4-Rpy exchanges at the iron centers of 1 and 2: k(ex)2?? = 6.5 ± 1.3 × 10?1 s?1, ΔH(?) = 89.47 ± 2 kJ mol?1, and ΔS(?) = +51.8 ± 6 J K?1 mol?1 for 1 and k(ex)2?? = 3.4 ± 0.5 × 10?1 s?1, ΔH(?) = 91.13 ± 2 kJ mol?1, and ΔS(?) = +51.9 ± 5 J K?1 mol?1 for 2. A limiting D mechanism is assigned for these ligand exchange reactions on the basis of first-order rate laws and positive and large entropies of activation. The exchange rates are 4 orders of magnitude slower than those observed for the ligand exchange on the reduced heterovalent cluster [Fe(III)?Fe(II)(μ?-O)(μ-O?CCH?)?(4-Phpy)?] (3). In 3, the intramolecular Fe(III)/Fe(II) electron exchange is too fast to be observed. At low temperatures, the 1/3 intermolecular second-order electron self-exchange reaction is faster than the 4-Phpy ligand exchange reactions on these two clusters, suggesting an outer-sphere mechanism: k?2?? = 72.4 ± 1.0 × 103 M?1 s?1, ΔH(?) = 18.18 ± 0.3 kJ mol?1, and ΔS(?) = -90.88 ± 1.0 J K?1 mol?1. The [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](+/0) electron self-exchange reaction is compared with the more than 3 orders of magnitude faster [Ru?(μ?-O)(μ-O?CCH?)?(py)?](+/0) self-exchange reaction (ΔΔG(exptl)(?298) = 18.2 kJ mol?1). The theoretical estimated self-exchange rate constants for both processes compare reasonably well with the experimental values. The equilibrium constant for the formation of the precursor to the electron-transfer and the free energy of activation contribution for the solvent reorganization to reach the electron transfer step are taken to be the same for both redox couples. The larger ΔG(exptl)(?298) for the 1/3 iron self-exchange is attributed to the larger (11.1 kJ mol?1) inner-sphere reorganization energy of the 1 and 3 iron clusters in addition to a supplementary energy (6.1 kJ mol?1) which arises as a result of the fact that each encounter is not electron-transfer spin-allowed for the iron redox couple.  相似文献   

7.
A new family of hexametallic [Mn(III)?] Single-Molecule Magnets with general formula [Mn?O?(R-sao)?(X)?(MeOH)???] (R= H, Me, Et or Ph; X = O?PHPh or O?P(Ph)?) have been synthesised and characterised. The molecules are new members of the [Mn?] family of SMMs in which the carboxylate ligands have been replaced with phenyl- and diphenylphosphinate. The magnetic cores remain largely unaltered meaning that structural distortions of the Mn-N-O-Mn torsion angles in the [Mn?O] subunits can be used to tune the magnetic properties, switching pairwise exchange interactions from antiferromagnetic to ferromagnetic. The results suggest that the Mn? building block, be it ferro- or antiferromagnetically coupled, could be an important building block for the formation of novel, functional 0-3D materials.  相似文献   

8.
A tetranuclear complex and a 1-D coordination polymer with a ladder-like topology have been obtained by connecting [Ni(II)Dy(III)] nodes with dicarboxylato ligands: [Ni?(valpn)?Dy?(III)(pdca)?(NO?)(H?O)?](NO?)·4H?O 1, and (∞)1[Ni?(H?O)?(valpn)?Dy?(tfa)?]·4CH?CN 2 (valpn2? = the dianion of the Schiff base resulting from reacting o-vanillin with 1,3-propanediamine; pdca2? = the dianion of 2,6-pyridinedicarboxylic acid; tfa2? = the dianion of the terephthalic acid). The magnetic measurements show a ferromagnetic interaction between Ni(II) and Dy(III), and that both compounds behave like SMM with strong tunnelling. The barrier of 2 (17.4 K) is higher than that of 1 (13.6 K).  相似文献   

9.
Aiming at the development of new architectures within the context of the quest for strongly luminescent materials with tunable emission, we utilized the propensity of the robust bimetallic clusters [Au?Ag?(R(I)/R(II))?] (R(I) = 4-C?F?I, R(II) = 2-C?F?I) for self-assembly through aurophilic interactions. With a de novo approach that combines the coordination and halogen-bonding potential of aromatic heteroperhalogenated ligands, we have generated a family of remarkably luminescent bimetallic materials that provide grounds to address the relevance, relative effects, and synergistic action of the two interactions in the underlying photophysics. By polymerizing the green-emitting (λ(max)(em) = 540 nm) monomer [Au?Ag?R(II)?(tfa)?]2? (tfa = trifluoroacetate) to a red-emitting (λ(max)(em) = 660 nm) polymer [Au?Ag?R(II)?(MeCN)?](n), we demonstrate herein that the degree of cluster association in these materials can be effectively and reversibly switched simply by applying mechanochemical and/or vapochemical stimuli in the solid state as well as by solvatochemistry in solution, the reactions being coincident with a dramatic switching of the intense, readily perceptible photoluminescence. We demonstrate that the key event in the related equilibrium is the evolution of a metastable yellow emitter (λ(max)(em) = 580 nm) for which the structure determination in the case of the ligand R(II) revealed a dimeric nonsolvated topology [Au?Ag?R(II)?]?. Taken together, these results reveal a two-stage scenario for the aurophilic-driven self-assembly of the bimetallic clusters [Au?Ag?(R(I)/R(II))?]: (1) initial association of the green-emitting monomers to form metastable yellow-emitting dimers and desolvation followed by (2) resolvation of the dimers and their self-assembly to form a red-emitting linear architecture with delocalized frontier orbitals and a reduced energy gap. The green emission from [Au?Ag?R(II)?(tfa)?]2? (λ(max)(em) = 540 nm) exceeds the highest energy observed for [Au?Ag?]-based structures to date, thereby expanding the spectral slice for emission from related structures beyond 140 nm, from the green region to the deep-red region.  相似文献   

10.
The synthesis, structural and magnetic characterisation of trinuclear manganese cluster, [Mn(3)O(O(2)C-anth)(6)(HOCH(3))(3)] 1 (where O(2)C-anth = 9-anthracenecarboxylate), with crystallographic three-fold (C(3)) symmetry, are described. The cluster was prepared by a carboxylate exchange reaction between HO(2)C-anth and [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)] with concomitant fragmentation of the dodecanuclear Mn core of the starting material to form a trinuclear Mn(3)(μ(3)-O) cluster capped by six carboxylate ligands. Bond valence sum calculations and SQUID magnetometric measurements establish the oxidation states of the metal ions as Mn(II)·2 Mn(III) which are antiferromagnetically coupled.  相似文献   

11.
Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)? by Hieber and Braun. The binuclear H?Re?(CO)? was subsequently synthesized as a stable compound with a central Re?(μ-H)? unit analogous to the B?(μ-H)? unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H?Re?(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)? structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)? structure by removal of one or two carbonyl groups. For H?Re?(CO)? a structure HRe?(CO)?(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re?(CO)?(η2-H?), similar to that of Re?(CO)??. For H?Re?(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re?(μ-H)?(CO)(n) structures. Higher energy dihydrogen complex structures are also found.  相似文献   

12.
The structures and magnetic properties of four isomorphous nonanuclear heterometallic complexes [Na(2){Mn(3)(III)(μ(3)-O(2-))}(2)Ln(III)(hmmp)(6)(O(2)CPh)(4)(N(3))(2)]OH·0.5 CH(3)CN·1.5H(2)O are reported, where Ln(III) = Eu (1), Gd (2), Tb (3) and Dy (4), H(2)hmmp = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol. Complexes 1-4 were prepared by the reactions of hmmpH(2) with a manganese salt and the respective lanthanide salt together with NaO(2)CPh and NaN(3). Single-crystal X-ray diffraction analyses reveal that the six Mn(III) and one Ln(III) metal topology in the aggregate can be described as a bitetrahedron. The two peripheral [Mn(III)(3)(μ(3)-O(2-))](7+) triangles are each bonded to a central Ln(III) ion with rare distorted octahedral geometry. The magnetic properties of all the complexes were investigated using variable temperature magnetic susceptibility and both antiferromagnetic and ferromagnetic interactions exist in the [Mn(III)(3)(μ(3)-O(2-))](7+) triangle. Weak ferromagnetic exchange between the Ln(III) and Mn(III) ions has been established for the corresponding Gd derivative. The Gd, Tb and Dy complexes show no evidence of slow relaxation behaviour above 2.0 K.  相似文献   

13.
A new functionalized bis-pyrazol-pyridine ligand has been prepared by reaction with hydrazine of the corresponding bis-β-diketone precursor, also unprecedented. The aerobic reaction of this ligand with ferrous thiocyanate in the presence of ascorbic or oxalic acid affords the dinuclear complex of seven-coordinate Fe(III), [Fe?(H?L2)?(ox)(NCS)?] (1), as revealed by single crystal X-ray diffraction. This may represent an entry into a new family of [Fe?] compounds with heptacoordinate metal centres. The capacity of this unusual chromophore to undergo magnetic super-exchange was investigated by means of bulk magnetization and DFT calculations. Both approaches confirmed the presence of antiferromagnetic interactions within the molecule. The theoretical investigation has served to describe the magnetic orbitals of Fe(III) in this unusual coordination geometry, as well as the exchange mechanism. A brief review of the scarce number of iron heptacoordinate complexes reported in the literature is also included and discussed.  相似文献   

14.
We report the synthesis and magnetic characterisation of a series of planar [M?] (M= Ni(II), Zn(II)) disc complexes [Ni?(OH)?(L?)?](NO?)? (1), [Ni?(OH)?(L?)?](NO?)?·2MeOH (2), [Ni?(OH)?(L?)?](NO?)?·3MeNO? (3), [Ni?(OH)?(L?)?](NO?)?·2MeCN (4), [Zn?(OH)?(L?)?](NO?)?·2MeOH·H?O (5) and [Zn?(OH)?(L?)?](NO?)?·3MeNO? (6) (where HL? = 2-iminomethyl-6-methoxy-phenol, HL? = 2-iminomethyl-4-bromo-6-methoxy-phenol). Each member exhibits a double-bowl pseudo metallocalix[6]arene topology whereby the individual [M?] units form molecular host cavities which are able to accommodate various guest molecules (MeCN, MeNO? and MeOH). Magnetic susceptibility measurements carried out on complexes 1 and 4 indicate weak exchange between the Ni(II) centres.  相似文献   

15.
Controlling the ratio of 2,2'-bpy to benzene-1,3,5-tricarboxylic acid produces two interesting complexes, namely [Co(2,2'-bpy)?]?(SO?)?8.5H?O (1) and [Cu?(BTCA) (2,2'-bpy)?] (OH)?(2,2'-bpy)?.??14H?O (2) (H?BTCA = benzene-1,3,5-tricarboxylic acid, 2,2'-bpy = 2,2'-bipyridine). We report the structural evidence in the solid state of discrete lamellar water cluster conformations. These units are found to act as supramolecular glue in the aggregation of cobalt (II) or copper (II) complexes to give three dimensional cage-like networks through hydrogen-bonding. It is interesting that the structure of complex 1 contains a 3D negatively charged cage.  相似文献   

16.
The synthesis, structures, and magnetic properties of a family of isostructural "bell-shaped" heterometallic coordination clusters [Mn(III)(9)Mn(II)(2)La(III)(2)(μ(4)-O)(7)(μ(3)-O)(μ(3)-OH)(2)(piv)(10.8)(O(2)CC(4)H(3)O)(6.2)(NO(3))(2)(OH(2))(1.5)(MeCN)(0.5)]·12CH(3)CN·2H(2)O (1) and [Mn(III)(9)Mn(II)(2)Ln(2)(μ(4)-O)(7)(μ (3)-O)(μ(3)-OH)(2)(piv)(10.6)(O(2)CC(4)H(3)O)(6.4)(NO(3))(2)(OH(2))]·nCH(3)CN·H(2)O (Ln = Pr(III), n = 8 (2); Ln = Nd(III), n = 10 (3); Ln = Eu(III), n = 17 (4); Ln = Gd(III), n = 13 (5); piv = pivalate) are reported. The complexes were obtained from the reaction of [Mn(III)(2)Mn(II)(4)O(2)(piv)(10)(4-Me-py)(2.5)(pivH)(1.5)] and Ln(NO(3))(3)·6H(2)O in the presence of 2-furan-carboxylic acid (C(4)H(3)OCOOH) in CH(3)CN. Compounds 1-5 are isomorphous, crystallizing in the triclinic space group P1 with Z = 2. The Mn(III) and Mn(II) centers together form the shell of the bell, while the two Ln(III) centers can be regarded as the bell's clapper. The magnetic properties of 1-4 reveal dominant antiferromagnetic interactions between the magnetic centers leading to small spin ground states; while those of 5 indicate similar antiferromagnetic interactions between the manganese ions but with unusually strong ferromagnetic interactions between the Gd(III) ions leading to a large overall spin ground state of S = 11-12. While ac and dc magnetic measurements confirmed that Mn(11)Gd(2) (5) is a single-molecule magnet (SMM) showing hysteresis loops at low temperatures, compounds 1-4 do not show any slow relaxation of the magnetization, indicating that the S = 7 spin of the ferromagnetic Gd(2) unit in 5 is a necessary contribution to its SMM behavior.  相似文献   

17.
The anionic triiron(III) cluster ligand [Fe(III)(3)(μ(3)-O)(bpca)(2)Cl(4)(EtO)(2)](-) (1; Hbpca=bis(2-pyridylcarbonyl)amine) was prepared as a building block for constructing larger metal assemblies. This "metal cluster complex ligand" was used in the synthesis of the mixed-valent heptairon complex [Fe(II)(1)(2)(EtOH)(2)], which has a ground-state spin value of S=12/2.  相似文献   

18.
The synthesis and characterizations of a family of isomorphous [Mn(III)(2)M(III)(4)L(2)(μ(4)-O)(2)(N(3))(2)(CH(3)O)(2)(CH(3)OH)(4)(NO(3))(2)]·2H(2)O (M = Y(1), Gd(2), Tb(3), Dy(4)) are reported, where H(4)L = N,N'-dihydroxyethyl-N,N'-(2-hydroxy-4,5-dimethylbenzyl)ethylenediamine. They were obtained from the reactions of H(4)L with M(NO(3))(3)·6H(2)O, Mn(ClO(4))(2)·6H(2)O, NaN(3) and NEt(3) in a 1?:?1?:?1?:?2?:?2 molar ratio. The core structure consists of a Mn(2)M(4) unit. The four M(III) ions that are held together by two μ(4)-bridging oxygen atoms form a butterfly M(4) moiety. The M(4) core is further connected to the two five-coordinate trigonal-bipyramidal Mn(III) ions via one μ(4)-O(2-), two alkyloxo and one methoxo triple bridges. Magnetic susceptibility measurements indicate the presence of intramolecular antiferromagnetic interactions in complex 2, and overall intramolecular ferromagnetic interactions in complexes 3 and 4. The alternating current (AC) magnetic susceptibility studies revealed that complexes 3 and 4 showed frequency-dependent out-of-phase signals, which indicates that they exhibit slow relaxation of the magnetization.  相似文献   

19.
Three isostructural cyanido-bridged heptanuclear complexes, [{Cu(II)(saldmen)(H?O)}?{M(III)(CN)?}]-(ClO?)?·8H?O (M= Fe(III) 2; Co(III), 3; Cr(III) 4), have been obtained by reacting the dinuclear copper(II) complex, [Cu?(saldmen)?(μ-H?O)(H?O)?](ClO?)?·2H?O 1, with K?[Co(CN)?], K?[Fe(CN)?], and K?[Cr(CN)?], respectively (Hsaldmen is the Schiff base resulting from the condensation of salicylaldehyde with N,N-dimethylethylenediamine). A unique octameric water cluster, with bicyclo[2,2,2]octane-like structure, is sandwiched between the heptanuclear cations in 2, 3 and 4. The cryomagnetic investigations of compounds 2 and 4 reveal ferromagnetic couplings of the central Fe(III) or Cr(III) ions with the Cu(II) ions (J(CuFe) = +0.87 cm?1, J(CuCr) = +30.4 cm?1). The intramolecular Cu···Cu exchange interaction in 3, across the diamagnetic cobalt(III) ion, is -0.3 cm?1. The solid-state 1H-NMR spectra of compounds 2 and 3 have been investigated.  相似文献   

20.
The synthesis, structural, and spectroscopic characterization of four new coordinatively unsaturated mononuclear thiolate-ligated manganese(II) complexes ([Mn(II)(S(Me2)N(4)(6-Me-DPEN))](BF(4)) (1), [Mn(II)(S(Me2)N(4)(6-Me-DPPN))](BPh(4))·MeCN (3), [Mn(II)(S(Me2)N(4)(2-QuinoPN))](PF(6))·MeCN·Et(2)O (4), and [Mn(II)(S(Me2)N(4)(6-H-DPEN)(MeOH)](BPh(4)) (5)) is described, along with their magnetic, redox, and reactivity properties. These complexes are structurally related to recently reported [Mn(II)(S(Me2)N(4)(2-QuinoEN))](PF(6)) (2) (Coggins, M. K.; Kovacs, J. A. J. Am. Chem. Soc.2011, 133, 12470). Dioxygen addition to complexes 1-5 is shown to result in the formation of five new rare examples of Mn(III) dimers containing a single, unsupported oxo bridge: [Mn(III)(S(Me2)N(4)(6-Me-DPEN)](2)-(μ-O)(BF(4))(2)·2MeOH (6), [Mn(III)(S(Me2)N(4)(QuinoEN)](2)-(μ-O)(PF(6))(2)·Et(2)O (7), [Mn(III)(S(Me2)N(4)(6-Me-DPPN)](2)-(μ-O)(BPh(4))(2) (8), [Mn(III)(S(Me2)N(4)(QuinoPN)](2)-(μ-O)(BPh(4))(2) (9), and [Mn(III)(S(Me2)N(4)(6-H-DPEN)](2)-(μ-O)(PF(6))(2)·2MeCN (10). Labeling studies show that the oxo atom is derived from (18)O(2). Ligand modifications, involving either the insertion of a methylene into the backbone or the placement of an ortho substituent on the N-heterocyclic amine, are shown to noticeably modulate the magnetic and reactivity properties. Fits to solid-state magnetic susceptibility data show that the Mn(III) ions of μ-oxo dimers 6-10 are moderately antiferromagnetically coupled, with coupling constants (2J) that fall within the expected range. Metastable intermediates, which ultimately convert to μ-oxo bridged 6 and 7, are observed in low-temperature reactions between 1 and 2 and dioxygen. Complexes 3-5, on the other hand, do not form observable intermediates, thus illustrating the effect that relatively minor ligand modifications have upon the stability of metastable dioxygen-derived species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号