首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Various surface species originating from the reaction between CO2 and H2 over Al2O3-supported Pt, Pd, Rh, and Ru model catalysts were investigated by attenuated total reflection infrared (ATR-IR) spectroscopy under high-pressure conditions. Two different spectroscopic cells were used: a variable-volume view cell equipped with ATR-crystal and transmission IR windows (batch reactor) and a continuous-flow cell also equipped with a reflection element for ATR-IR spectroscopy. The study corroborated that CO formation from dense CO2 in the presence of hydrogen occurs over all Pt-group metals commonly used in heterogeneous catalytic hydrogenations in supercritical CO2 (scCO2). In the batch reactor cell, formation of CO was detected on all metals at 50 and 90 degrees C, with the highest rate on Pt. Additional surface species were observed on Pt/Al2O3 at 150 bar under static conditions. It seems that further reaction of CO with hydrogen is facilitated by the higher surface concentration at higher pressure. In the continuous-flow cell, CO coverage on Pt/Al2O3 was less prominent than that in the batch reactor cell. A transient experiment in the continuous-flow cell additionally revealed CO formation on Pt/Al2O3 at 120 bar after switching the feed from a H2-ethane to a H2-CO2 mixture. The in situ ATR-IR measurements indicate that CO formation in CO2-H2 mixtures is normally a minor side reaction during hydrogenation reactions on Pt-group metal catalysts, and dense ("supercritical") CO2 may be considered as a relatively "inert" solvent in many practical applications. However, blocking of specific sites on the metal surface by CO and consecutive products can affect structure sensitive hydrogenation reactions and may be at the origin of unexpected shifts in the product distribution.  相似文献   

2.
The palladium-catalyzed liquid-phase reaction of benzyl alcohol to benzaldehyde was investigated in the presence and absence of oxygen by attenuated total reflection infrared (ATR-IR) spectroscopy. The 5 wt % Pd/Al2O3 catalyst was fixed in a flow-through ATR-IR cell serving as a continuous-flow reactor. The reaction conditions (cyclohexane solvent, 323 K, 1 bar) were set in the range commonly applied in the heterogeneous catalytic aerobic oxidation of alcohols. The in situ ATR-IR study of the solid-liquid interface revealed a complex reaction network, including dehydrogenation of benzyl alcohol to benzaldehyde, decarbonylation of benzaldehyde, oxidation of hydrogen and CO on Pd, and formation of benzoic acid catalyzed by both Pd and Al2O3. Continuous formation of CO and its oxidative removal by air resulted in significant steady-state CO coverage of Pd during oxidation of benzyl alcohol. Unexpectedly, benzoic acid formed already in the early stage of the reaction and adsorbed strongly (irreversibly) on the basic sites of Al2O3 and thus remained undetectable in the effluent. This observation questions the reliability of product distributions conventionally determined from the liquid phase. The occurrence of the hydrogenolysis of the C-O bond of benzyl alcohol and formation of toluene indicates that Pd was present in a reduced state (Pd0) even in the presence of oxygen, in agreement with the dehydrogenation mechanism of alcohol oxidation.  相似文献   

3.
High-energy-resolution fluorescence detection (HERFD) X-ray spectroscopy is presented as a new tool for the identification of the bonding sites of reactants in supported metal catalysts. The type of adsorption site of CO on an alumina-supported platinum catalyst and the orbitals involved in the bonding are identified. Because X-ray absorption spectroscopy (XAS) is element-specific and can be used under high pressures and temperatures, in situ HERFD XAS can be applied to a swathe of catalytic systems, including alloys.  相似文献   

4.
CO(2) is a major contaminant of renewable H(2) derived from biomass fermentation. The effect of the presence of CO(2) on the activity of alumina-supported Pt and Rh catalysts used for the hydrogenation of toluene at 348 K was investigated. The use of operando diffuse reflectance spectroscopy (DRIFTS) was crucial in unravelling the changes in the nature and abundance of species adsorbed at the sample surface and relating those to the changes of catalytic activity. Rhodium supported on alumina was only partly deactivated by the introduction of CO(2) during the hydrogenation of toluene, contrary to the case of Pt/alumina. Rh was only partially covered by carbonyl species derived from CO(2) and it was shown that toluene could successfully compete with some of the linearly adsorbed carbonyls for adsorption. The alumina support stored many CO(2)-derived adsorbates (carbonates, hydrogenocarbonates, carboxylates) that could spill over to the metal and form carbonyl species even after the removal of CO(2) from the feed.  相似文献   

5.
Methanol electrooxidation in a 0.5 M sulfuric acid electrolyte containing 1.0 M CH3OH was studied on 30% Pt/carbon and 30% PtRu/carbon (Pt/Ru = 1:1) catalysts using X-ray absorption spectroscopy (XAS). Absorption by Pt and Ru was measured at constant photon energy in the near edge region during linear potential sweeps of 10-50 mV/s between 0.01 and 1.36 V vs rhe. The absorption results were used to follow Pt and Ru oxidation and reduction under transient conditions as well as to monitor Ru dissolution. Both catalysts exhibited higher activity for methanol oxidation at high potential following multiple potential cycles. Correlation of XAS data with the potential sweeps indicates that Pt catalysts lose activity at high potentials due to Pt oxidation. The addition of Ru to Pt accelerates the rate of methanol oxidation at all potentials. Ru is more readily oxidized than Pt, but unlike Pt, its oxidation does not result in a decrease in catalytic activity. PtRu/carbon catalysts underwent significant changes during potential cycling due to Ru loss. Similar current density vs potential results were obtained using the same PtRu/carbon catalyst at the same loading in a membrane electrode assembly half cell with only a Nafion (DuPont) solid electrolyte. The results are interpreted in terms of a bifunctional catalyst mechanism in which Pt surface sites serve to chemisorb and dissociate methanol to protons and carbon monoxide, while Ru surface sites activate water and accelerate the oxidation of the chemisorbed CO intermediate. PtRu/carbon catalysts maintain their activity at very high potentials, which is attributed to the ability of the added Ru to keep Pt present in a reduced state, a necessary requirement for methanol chemisorption and dissociation.  相似文献   

6.
The interaction of colloid-based, carbon supported Pt/C (40 wt%), PtRu/C (45 wt%) and Pt3Sn/C (24 wt%) catalysts with ethanol and their performance for ethanol electrooxidation were investigated in model studies by electrochemical, in situ infrared spectroscopy and on-line differential electrochemical mass spectrometry measurements. The combined application of in situ spectroscopic techniques on realistic catalysts and under realistic reaction (DEMS, IR) and transport conditions (DEMS) yields new insight on mechanistic details of the reaction on these catalysts under the above reaction and transport conditions. Based on these results, the addition of Sn or Ru, though beneficial for the overall activity for ethanol oxidation, does not enhance the activity for C-C bond breaking. Dissociative adsorption of ethanol to form CO2 is more facile on the Pt/C catalyst than on PtRu/C and Pt3Sn/C catalysts within the potential range of technical interests (<0.6 V), but Pt/C is rapidly blocked by an inhibiting CO adlayer. In all cases acetaldehyde and acetic acid are dominant products, CO2 formation contributes less than 2% to the total current. The higher ethanol oxidation current density on the Pt3Sn/C catalyst at these potentials results from higher yields of C2 products, not from an improved complete ethanol oxidation to CO2.  相似文献   

7.
通过水热法合成了纯相的α-MnO2和δ-MnO2纳米棒,并利用溶胶固定化工艺制备了负载铂纳米颗粒的Pt/MnO2材料.通过透射电镜(TEM),X射线粉末衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),N2吸附-脱附和H2程序升温还原(H2-TPR)技术研究了样品的微观结构和吸附活性位,探查了CO和挥发性有机化合物(VOCs)(苯和甲苯)在催化剂上的催化发光(CTL)性质.结果表明:铂颗粒在α-MnO2和δ-MnO2载体上以高分散状态存在,负载过程不会影响α-MnO2纳米棒的晶相结构,但会导致δ-MnO2纳米棒产生结构变化.经XPS证实不是Pt与其发生了反应.α-和δ-MnO2纳米棒对CO、苯和甲苯的催化氧化都具有很高的活性,δ-MnO2的活性略高于α-MnO2相.虽然N2吸附-脱附实验结果证实Pt负载会导致MnO2纳米棒比表面积的下降,但H2-TPR结果显示Pt和MnO2之间会产生强烈的相互作用,显著增强其催化活性,且Pt/δ-MnO2活性高于Pt/α-MnO2.催化氧化发光研究表明,这四种催化剂活性顺序是α-MnO2≤δ-MnO2相似文献   

8.
IR spectroscopy has been an important tool for studying detailed interactions of reactants and reaction-intermediates with catalyst surfaces. Studying reactions in water is, however, far from trivial, due to the excessive absorption of infrared light by water. One way to deal with this is the use of Attenuated Total Reflection spectroscopy (ATR-IR) minimizing the path length of infrared light through the water. Moreover, ATR-IR allows for a direct comparison of reactions in gas and water on the same sample, which bridges the gap between separate catalyst investigations in gas and liquid phase. This tutorial review describes recent progress in using ATR-IR for studying heterogeneous catalysts in water. An overview is given of the important aspects to be taken into account when using ATR-IR to study heterogeneous catalysts in liquid phase, like the procedure to prepare stable catalyst layers on the internal reflection element. As a case study, CO adsorption and oxidation on noble metal catalysts is investigated with ATR-IR in gas and water. The results show a large effect of water and pH on the adsorption and oxidation of CO on Pt/Al(2)O(3) and Pd/Al(2)O(3). From the results it is concluded that water affects the metal particle potential as well as the adsorbed CO molecule directly, resulting in higher oxidation rates in water compared to gas phase. Moreover, also pH influences the metal particle potential with a clear effect on the observed oxidation rates. Finally, the future outlook illustrates that ATR-IR spectroscopy holds great promise in the field of liquid phase heterogeneous catalysis.  相似文献   

9.
在传统热催化材料的研究领域中,光照技术已经得到了广泛的应用,从而使传统热催化剂的催化反应活性和选择性得到优化.然而,在光热协同催化反应过程中,光照因素对催化反应过程的影响尚未得到很好地研究和理解.本文通过浸渍法制得Pt/Al2O3催化剂,并应用于光热协同催化CO2加氢反应.结果证明,在光热协同CO2加氢催化反应中, Pt/Al2O3催化剂表现出光热协同效应.本文结合原位漫反射红外光谱(operandoDRIFTS)和密度泛函理论计算(DFT)对光照因素对该催化反应过程的作用机制进行了进一步深入研究.结果表明, CO气体分子从Pt纳米颗粒上的脱附过程为CO2加氢反应的重要步骤;CO气体分子在Pt纳米颗粒上脱附的位置包含台阶位置(Ptstep)和平台位置(Ptterrace).结果表明,反应过程中CO气体分子从Pt表面的脱附有利于催化剂暴露出Pt反应活性位点.值得注意的是,在光热协同催化CO2加氢反应过程中,光照和温度因素对CO气体分子的脱附过程具有不同影响.吸附能的计算结果证明, CO气体分子吸附在Ptstep和Ptterrace上的吸附能分别为-1.24和-1.43eV.由此可见, CO气体分子与Pt纳米颗粒上的Ptstep吸附位点之间相互作用更强.在无光照作用的条件下对催化剂进行加热, CO气体分子更容易从Ptterrace吸附位点发生脱附;但是在对应的温度下加入光照作用后,吸附在Ptstep位点上的CO气体分子会先转移到Ptterrace吸附位点上,随后脱附,从而促进CO2加氢反应的进行.  相似文献   

10.
A new Pt monolayer electrocatalyst concept is described and the results of electrochemical and X-ray absorption spectroscopy (XAS) studies are presented. Two new methods that facilitate the application of this concept in obtaining ultra-low-Pt-content electrocatalysts have been developed. One is the electroless (spontaneous) deposition of a Pt submonolayer on Ru nanoparticles, and the other is a deposition of a Pt monolayer on Pd nanoparticles by redox displacement of a Cu adlayer. The Pt submonolayer on Ru (PtRu20) electrocatalyst demonstrated higher CO tolerance than commercial catalysts under conditions of rotating disk experiments. The long-term stability test showed no loss in performance over 870 h using a fuel cell operating under real conditions, even though the Pt loading was approximately 10% of that of the standard Pt loading. In situ XAS indicated an increase in d-band vacancy of deposited Pt, which may facilitate partly the reduced susceptibility to CO poisoning for this catalyst. The kinetics of O2 reduction on a Pt monolayer on Pd nanoparticles showed a small enhancement in comparison with that from a Pt nanoparticle electrocatalyst. The increase in catalytic activity is partly attributed to decreased formation of PtOH, as shown by XAS experiments.  相似文献   

11.
Adsorption of carbon monoxide and oxidation of preadsorbed carbon monoxide from gas and aqueous phases were studied on a platinum catalyst deposited on a ZnSe internal reflection element (IRE) using attenuated total reflection infrared (ATR-IR) spectroscopy. The results of this study convincingly show that it is possible to prepare platinum metal layers strongly attached to an IRE, which are stable for over 3 days in aqueous-phase experiments. It is shown that ATR-IR spectroscopy is a suitable technique to study adsorption and catalytic reactions occurring at the interface of a solid catalyst in an aqueous reaction mixture, even with an extreme low-surface-area catalyst. Clearly, ATR-IR spectroscopy allows for a direct comparison of reactions on a catalytic surface in gas and liquid phases on the same sample. CO was found to adsorb both linearly and bridged on the platinum metal layer when adsorbed from the gas phase, but only linear CO was detected in aqueous solution, although with 5 times higher intensity. Oxidation of preadsorbed CO on platinum occurs in both gas phase, wetted gas, and aqueous media and was found to be 2 times faster in the aqueous phase compared to gas-phase oxidation because of a promoting effect of water. Moreover, during oxidation at room temperature, CO2 adsorbed on Pt/ZnSe was detected in both gas and aqueous phases.  相似文献   

12.
近年来,随着大气环境污染问题日益严重,汽车尾气排放受到政府越来越严苛的控制.柴油车排气成分主要包括碳氢化合物(HC)、一氧化碳(CO)、氮氧化物(NOx)、微粒(PM)和二氧化硫(SO2),因此常用的尾气后处理系统有颗粒捕获器(DPF)、氧化型催化转换器(DOC)以及NOx选择还原系统(SCR),在处理尾气时三者联合使用.其中柴油机氧化型催化剂(DOC)是汽车尾气后处理装置的重要组成部分,主要用于氧化CO,HC和NO,可以将CO和HC氧化成无害的CO2和H2O,将NO氧化成NO2,为后续SCR反应提供条件.柴油机排气温度一般较低(150?400°C),特别是在冷启动阶段,排气温度可降低到100°C左右,要求催化剂具有良好的低温催化活性.此外,由于柴油中存在少量含硫有机化合物,经过燃烧分解,使得柴油机尾气中含有少量SO2,对催化剂又有钝化作用,因此催化剂的抗硫性也是需要关注的重点.本文采用浸渍法制备Pt/Ce-Zr-SO42?催化剂,考察了催化剂载体硫酸化以及Pt和H2SO4的负载顺序对催化剂催化氧化C3H6和CO的活性及抗硫性的影响,并且对Pt/Ce-Zr-SO42?催化剂进行了一系列表征,探究其物理化学性质.结果表明,SO42?的添加能有效提高催化剂活性.Pt/CZ-10S对C3H6和CO的T90(转化率为90%时的温度)相较于Pt/CZ催化剂降低了约75°C,另外,Pt/CZ-10S催化剂也表现出较好的抗硫稳定性,在含硫尾气中240°C反应20 h后,其对C3H6和CO的转化率仍保持在95%以上.CO-TPD和XPS分析结果显示,Ce-Zr-SO42?载体上Pt的分散度增加,增加的Pt颗粒可以产生更多新的活性位点(Pt&+-(SO42?)&?couples),从而表现出优异的催化活性.此外,硫酸化后催化剂表面酸性的变化也是其抗硫性能提高的原因.  相似文献   

13.
Pt/γ-Al2O3催化剂活性位的表征及其噻吩加氢脱硫催化活性   总被引:2,自引:0,他引:2  
A series of Pt/γ Al 2O 3 catalysts with different content of Pt were characterized by using low temperature FT IR spectroscopy of adsorbed CO, while their catalytic activity for HDS was investigated with thiophene as a model substrate. On the basis of the experimental results, it has been obtained that the pseudo zero order rate of the thiophene HDS reaction is well linearly proportional to the total area of the two IR bands at 2?080 and 1?850 cm -1 of CO adsorbed on Pt/γ Al 2O 3, and that the Pt sites for CO adsorption may be the active centers for thiophene HDS reaction.  相似文献   

14.
The design and development of metal-cluster-based heterogeneous catalysts with high activity, selectivity, and stability under solution-phase reaction conditions will enable their applications as recyclable catalysts in large-scale fine chemicals production. To achieve these required catalytic properties, a heterogeneous catalyst must contain specific catalytically active species in high concentration, and the active species must be stabilized on a solid catalyst support under solution-phase reaction conditions. These requirements pose a great challenge for catalysis research to design metal-cluster-based catalysts for solution-phase catalytic processes. Here, we focus on a silica-supported, polymer-encapsulated Pt catalyst for an electrophilic hydroalkoxylation reaction in toluene, which exhibits superior selectivity and stability against leaching under mild reaction conditions. We unveil the key factors leading to the observed superior catalytic performance by combining X-ray absorption spectroscopy (XAS) and reaction kinetic studies. On the basis of the mechanistic understandings obtained in this work, we also provide useful guidelines for designing metal-cluster-based catalyst for a broader range of reactions in the solution phase.  相似文献   

15.
Xiao  Quan  Wang  Yanan  Zhao  Zhi-Jian  Pei  Chunlei  Chen  Sai  Gao  Lijun  Mu  Rentao  Fu  Qiang  Gong  Jinlong 《中国科学:化学(英文版)》2020,63(9):1323-1330
Defects are ubiquitous in oxide supports and can often tune the catalytic property of supported metal catalysts. This work describes the distinct role of titanium and oxygen vacancies of TiO_2 supports in the catalytic performance of supported Pt catalysts for CO oxidation. Pt was loaded on the TiO_2 supports with oxygen vacancies(VO-TiO_2) and titanium vacancies(VTiTiO_2). It was found that different defects of TiO_2 could distinctively modify the electron property of Pt and thereby CO adsorption strength. The strength of CO adsorption on Pt/VTi-TiO_2 is enhanced, while that of Pt/VO-TiO_2 becomes weaker.Additionally, the presence of defects would also promote the reducibility of catalysts. On the account of the superior redox ability, both Pt/VTi-TiO_2 and Pt/VO-TiO_2 exhibit a higher activity than Pt supported on normal TiO_2 for CO oxidation.  相似文献   

16.
A series of Ti-promoted (6 wt%) Co/SiO2 catalysts with titania content of 0 to 10 wt% were sequentially prepared by incipient wetness impregnation, and characterized with X-ray diffraction, thermogravimetric analysis, chemisorption, temperature-programmed desorption and infrared spectroscopy. The influences of Ti addition and reduction temperature (400–700 °C) on the adsorptive behavior and the catalytic properties for CO hydrogenation were investigated. The presence of Ti decreases the adsorption capacity of the cobalt surface for H2, but enhances activity per gram cobalt. In addition, the turnover frequency increases 2–4 times upon Ti addition at reduction temperatures of 400–700 °C. The promotion in activity is accompanied by an enhanced selectivity for higher hydrocarbons and olefins. These modifications can be rationalized by the creation of active sites for CO dissociation. The desorption of CO2 at 100 °C during temperature-programmed desorption of CO indicates the formation of active sites for CO disproportionation. Infrared spectroscopy indicates an increase in the relative absorbance of 2060–2075 cm?1 bands upon Ti addition, which are attributed to CO adsorbed on the defect sites of the cobalt surface. Therefore, the promotion effect of Ti may be directly related to the formation of defect sites on the cobalt surface induced by the decorated titania moieties.  相似文献   

17.
The oxidation of carbon monoxide (CO) has received more attention in the last two to three decades owing to its importance in different fields. To control this CO pollution, catalytic converters have been investigated. Different types of catalysts have been used in a catalytic converter for CO emission control purposes. Platinum (Pt)-based noble metal catalysts show great potential for CO oxidation in catalytic converters with high thermal stability and tailoring flexibility. Pt metal catalysts modified with promoters such as alkali metals and reducible metal oxides have received great attention for their superior catalytic activities in CO oxidation. Temperature, close environment of the catalyst, and chemical composition in the surface layer of the catalyst have a huge effect on the active phase dispersion and O2 adsorption capacity of the Pt metal catalysts. The main difference in activities of Pt metal catalyst for CO oxidation in O2 or H2 atmosphere has found. The addition of supports in Pt metal catalysts has improved their performances and reduced their cost. These improvement strongly depends on the surface structure, morphology, number of active sites, and various Pt-O interactions. Many research articles have already been published in CO oxidation over Pt metal catalysts, but no review article dedicated to CO oxidation is available in the literature.  相似文献   

18.
The finding of new metal alloyed nanocrystals (NCs) with high catalytic activity and low cost to replace PtRu NCs is a critical step toward the commercialization of fuel cells. In this work, a simple cation replacement reaction was utilized to synthesize a new type of ternary Fe(1-x)PtRu(x) NCs from binary FePt NCs. The detailed structural transformation from binary FePt NCs to ternary Fe(1-x)PtRu(x) NCs was analyzed by X-ray absorption spectroscopy (XAS). Ternary Fe(35)Pt(40)Ru(25), Fe(31)Pt(40)Ru(29), and Fe(17)Pt(40)Ru(43) NCs exhibit superior catalytic ability to withstand CO poisoning in methanol oxidation reaction (MOR) than do binary NCs (FePt and J-M PtRu). Also, the Fe(31)Pt(40)Ru(29) NCs had the highest alloying extent and the lowest onset potential among the ternary NCs. Furthermore, the origin for the superior CO resistance of ternary Fe(1-x)PtRu(x) NCs was investigated by determining the adsorption energy of CO on the NCs' surfaces and the charge transfer from Fe/Ru to Pt using a simulation based on density functional theory. The simulation results suggested that by introducing a new metal into binary PtRu/PtFe NCs, the anti-CO poisoning ability of ternary Fe(1-x)PtRu(x) NCs was greatly enhanced because the bonding of CO-Pt on the NCs' surface was weakened. Overall, our experimental and simulation results have indicated a simple route for the discovery of new metal alloyed catalysts with superior anti-CO poisoning ability and low usage of Pt and Ru for fuel cell applications.  相似文献   

19.
制备了一种粘附在堇青石蜂窝陶瓷载体上的CeO_2-Y_2O_3(CeY)复合氧化物新涂层.以二氧化铈和柠檬酸钇为前驱体,制备过程中无有害物质产生,对环境友好.CeY涂层和Pd/CeY催化剂通过SEM、EDX、XRF和Raman光谱等表征.结果表明,此涂层的粘结强度高,对活性组分的吸附性能好,适合用来负载钯催化剂.Y_2O_3大部分进入了峰窝陶瓷的孔道内,CeO_2和Pd物种则富集在载体的表面.以CO、甲苯和乙酸乙酯的催化燃烧来评价Pd/CeY催化剂的性能,此催化剂具有较好的催化活性和热稳定性.500℃焙烧的催化剂,CO、甲苯和乙酸乙酯的T_(99)(转化率99%以上所需的最低反应温度)分别为150、220和310℃;1050℃焙烧的催化剂,它们的T_(99)分别为180、250和330℃.高温焙烧的催化剂,活性物种PdO的晶粒增大,这可能导致催化剂的活性下降.  相似文献   

20.
相比于传统块体材料, 铂单原子催化剂(Pt SACs)具有接近100%的贵金属利用率、 优异的催化活性和均一的反应位点等优势, 近年来逐渐成为催化研究的前沿之一. 高度分散的Pt原子与载体之间的界面相互作用很大程度上决定了Pt SACs的物理和化学性能. 因此, 建立金属-载体相互作用与性能之间的内在关联机制, 对于单原子催化剂的优化设计至关重要. 得益于同步辐射光源高亮度、 高准直性和宽波谱的优势, X射线吸收谱技术在鉴别单原子催化剂的电子结构和局域配位方面的成果显著. 本文综合评述了Pt SACs X射线吸收谱的研究进展, 重点介绍了Pt与金属氧化物、 金属、 纳米碳和多孔有机框架等载体之间独特的相互作用, 以及其对性能的影响机制, 并对未来同步辐射新技术在Pt SACs的高分辨解析方面的前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号