首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pd(ii) pincer adsorbate molecules (1) were inserted into self-assembled monolayers (SAMs) of alkanethiols with different chain lengths (C(8) to C(18)) on annealed gold substrates. Their presence was brought to expression by reaction of with Au nanoclusters bearing phosphine moieties (2). The surface-confined Au nanoclusters were observed only on the shorter chain SAMs (C(8)SH to C(16)SH) and not on C(18)SH SAMs. This is attributed to the longer chain length of C(18)SH preventing the insertion of pincer molecules. Microcontact printing (microCP) with C(18)SH on unannealed gold substrates and the subsequent immersion of the substrates into C(8)SH, C(10)SH, C(12)SH, or C(16)SH solutions, yielded a series of patterned SAMs that have areas of thiols of different chain lengths. Insertion of 1 followed by expression using 2, or insertion of 3 showed inserted molecules only in the shorter chain SAM areas. The absolute particle densities in the former case were higher than on the corresponding homogeneous SAMs on annealed substrates, probably due to larger numbers of defects in the SAMs on unannealed substrates.  相似文献   

2.
Redox-responsive poly(ferrocenylsilane) (PFS) polymer molecules were attached individually to gold surfaces for force spectroscopy experiments on the single molecule level. By grafting ethylenesulfide-functionalized PFS into the defects of preformed self-assembled monolayers (SAMs) of different omega-mercaptoalkanols on Au(111), the surface coverage of PFS macromolecules could be conveniently controlled. Atomic force microscopy (AFM), contact angle, as well as cyclic and differential pulse voltammetry measurements were carried out to characterize the morphology, wettability, and surface coverage of the grafted layers. The values of the PFS surface coverage were found to depend on the chain length of the omega-mercaptoalkanol molecules and on the concentration of the PFS solution but not on the insertion time or on the molar mass of PFS. The equilibrium surface coverages were successfully described by Langmuir adsorption isotherms. For low-surface coverage values (< 6.2 x 10(-4) chain/nm2), achieved by PFS insertion from very dilute solutions (8 x 10(-6) M) into long-chain SAMs, AFM and differential pulse voltammetry showed that surfaces exposing isolated individual polymer chains were obtained. The isolated PFS macromolecules were subjected to in situ AFM-based single molecule force spectroscopy (SMFS) measurements. The single chain elasticity of PFS in isopropanol (and ethanol) was fitted with the modified freely jointed chain (m-FJC) model. This procedure yielded a Kuhn segment length of 0.33 +/- 0.05 nm and a segment elasticity of 32 +/- 5 nN/nm.  相似文献   

3.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated.  相似文献   

4.
Aryl-based pincer metal complexes with anionic terdentate ligands have been widely applied in organic synthesis, organometallic catalysis and other related areas. Synthetically, the most simple and convenient method for the construction of these complexes is the direct metal-induced C(aryl)-H bond activation, which can be fulfilled by choosing the appropriate functional donor groups in the two side arms of the aryl-based pincer preligands. In this perspective, we wish to summarize some results achieved by our group in this context. Successful examples include symmetrical chiral bis(imidazoline) NCN pincer complexes with Ni(II), Pd(II) and Pt(II), bis(phosphinite) and bis(phosphoramidite) PCP pincer Pd(II) complexes, unsymmetrical (pyrazolyl)phosphinite, (amino)phosphinite and (imino)phosphinite PCN pincer Pd(II) complexes, chiral (imidazolinyl)phosphinite and (imidazolinyl)phosphoramidite PCN pincer complexes with Ni(II) and Pd(II) as well as unsymmetrical (oxazolinyl)amine and (oxazolinyl)pyrazole NCN' pincer Pd(II) complexes. Among them, the P-donor containing complexes are efficiently synthesized by the "one-pot phosphorylation/metalation" method. The obtained symmetrical and unsymmetrical pincer complexes have been used as catalysts in Suzuki-Miyaura reaction (Pd), asymmetric Friedel-Crafts alkylation of indole with trans-β-nitrostyrene (Pt) as well as in asymmetric allylation of aldehyde and sulfonimine (Pd). In the Suzuki couplings conducted at 40-50 °C, some unsymmetrical Pd complexes exhibit much higher activity than the related symmetrical ones which can be attributed to their faster release of active Pd(0) species resulting from the hemilabile coordination of the ligands. Literature results on the synthesis of some related pincer complexes as well as their activities in the above catalytic reactions are also presented.  相似文献   

5.
We describe the formation of stable dithiol-bifunctionalized Ru(II)-terpyridine monolayer onto gold electrode. The coverage-dependent behavior onto gold electrode has been studied by electrochemical technique. The stability, surface charge coverage, and electron-transfer kinetics were assessed by cyclic voltammetry. Functionalized monolayer-protected Au clusters (MPCs) were also prepared. The spectroscopic characterization data of MPCs using UV-Vis and TEM techniques are discussed. TEM images showed that functionalized spherical nanoclusters of 4.7 ± 0.3 and 4.3 ± 0.2 nm were produced. The particle sizes are uniform with a narrow size distribution. The morphology of Au(1 1 1) metal surface modified with MPCs was imaged using atomic force microscopy (AFM). The nanoparticle layer exhibits a distinct surface morphology, irregularly shaped domains with dimensions from 20 to 60 nm and root mean square heights of 2.401 nm.  相似文献   

6.
Solid-phase synthetic templates for Au nanoparticles were developed using Merrifield resins and polyamidoamine (PAMAM) dendrimers. This synthetic scheme affords the opportunity to prepare metal nanoparticles in the absence of air and water, and it does not necessitate phase transfer agents that can be difficult to remove in subsequent steps. Amine-terminated generation 5 PAMAM (G5NH2) dendrimers were grafted to anhydride functionalized polystyrene resin beads and alkylated with 1,2-epoxydodecane to produce G5C12anch. The anchored dendrimers bound both CoII and AuIII salts from toluene solutions at ratios comparable to those of solution phase alkyl-terminated PAMAM dendrimers. The encapsulated AuIII salts could be reduced with NaBH4 to produce anchored dendrimer encapsulated nanoparticles (DENs). Treatment of the anchored DENs with decanethiol in toluene extracted the Au nanoparticles from the dendrimers as monolayer protected clusters (MPCs). After a brief NaCN etch, the anchored dendrimers were readily recycled and a subsequent synthesis of decanethiol Au MPCs was performed with comparable MPC yield and particle size distribution.  相似文献   

7.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

8.
Gold-phosphido-monolayer-protected clusters (MPCs) of 1-2-nm diameter, Au(x)(PR2)y, analogues of the well-known thiolate materials Au(x)(SR)y, were prepared by NaBH4 reduction of a mixture of HAuCl4.3H2O and a secondary phosphine PHR2 in tetrahydrofuran/water. In comparison to the Au-thiolate MPCs, fewer of the larger phosphido groups are required to cover the surface, and the Au-P bond is not cleaved as readily in reactions with small molecules as is its Au-S counterpart. 31P NMR spectroscopy provides a direct method to study cluster formation and the interaction of the phosphido ligand with the gold surface.  相似文献   

9.
Characterization of self-assembled monolayers of thiols on Au(111)   总被引:1,自引:0,他引:1  
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses.  相似文献   

10.
The solution self-assembly of alpha,omega-alkanedithiols onto Au(111) was investigated using atomic force microscopy (AFM). A heterogeneous surface morphology is apparent for 1,8-octanedithiol and for 1,9-nonanedithiol self-assembled monolayers (SAMs) prepared by solution immersion as compared to methyl-terminated n-alkanethiols. Local views from AFM images reveal a layer of mixed molecular orientations for alpha,omega-alkanedithiols, which evidence surface structures with heights corresponding to both lying-down and standing-up orientations. For dithiol SAMs prepared by solution self-assembly, the majority of alpha,omega-alkanedithiol molecules chemisorb with both thiol end groups bound to the Au(111) surface with the backbone of the alkane chain aligned parallel to the surface. However, AFM images disclose that there are also islands of standing molecules scattered throughout the surface. To measure the thickness of alpha,omega-alkanedithiol SAMs with angstrom sensitivity, methyl-terminated n-alkanethiols with known dimensions were used as molecular rulers. Under conditions of spatially constrained self-assembly, nanopatterns of alpha,omega-alkanedithiols written by nanografting formed monolayers with heights corresponding to an upright configuration.  相似文献   

11.
A cavitand functionalized with four alkylthioether groups at the lower rim, and four tolylpyridine groups on the upper rim is able to bind to a gold surface by its thioether groups, and forms a coordination cage with [Pd(dppp)(CF(3)SO(3))(2)] by its pyridine groups. The cavitand or the cage complex can be inserted from solution into a self-assembled monolayer (SAM) of 11-mercaptoundecanol on gold. The inserted molecules can be individually detected as they protrude from the SAM by atomic force microscopy (AFM). The cages can be reversibly assembled and disassembled on the gold surface. AFM can distinguish between single cavitand and cage molecules of 2.5 nm and 5.8 nm height, respectively.  相似文献   

12.
Palladium monolayer-protected clusters (MPCs) coated with octylamines (C8NH(2)), hexanethiolates (C6S), and mixed monolayers of C8NH(2) and C6S exhibit significantly different reactivities with hydrogen gas, depending on the relative amounts of the two ligands coating the Pd nanoparticle surface, as determined by UV-vis spectroscopy of Pd MPCs in solution and electronic measurements of films of Pd MPCs as a function of exposure time to hydrogen. The average estimated composition of the ~3.0 nm diameter Pd MPCs was Pd(919)(C6S)(192) or Pd(919)(C8NH(2))(177-x)(C6S)(x), where x was varied to be 0, 3, 10, 16, 32, or 81 by the synthesis of pure C8NH(2) Pd MPCs and subsequent liquid-phase place exchange with a varied amount of C6SH. When x = 0-10, the Pd MPCs react strongly with H(2), leading to aggregated particles in solution and large irreversible changes in the morphology of films accompanied by an increase in film conductivity by 2-5 orders of magnitude. Pd(919)(C6S)(192) MPCs are stable against significant aggregation in solution and do not exhibit large film morphology changes, but they are also not highly reactive to H(2), as determined by minimal changes in the optical properties of solutions and the small, irreversible changes in the conductivity of films in the presence of H(2). Finally, when x is 32 and 81, the Pd MPCs are fairly stable, exhibit minimal aggregation or morphology changes, and readily react with H(2) based on the significant, reversible changes in film conductivity in the presence of H(2). Pd MPCs with mixed monolayers have the benefit of high H(2) reactivity while maintaining the structural stability necessary for sensing and catalysis applications.  相似文献   

13.
The reaction of 2 equiv of the air-stable primary phosphine (ferrocenylmethyl)phosphine (PH2CH2Fc, 1) with [Pd(cod)Cl2] (Fc = ferrocenyl; cod = 1,5-cyclooctadiene) at 298 K gave the phosphanido-bridged Pd(II) tetramer [Pd(PH2CH2Fc)Cl(mu-PHCH2Fc)]4 (2), which shows an unprecedented arrangement of four Pd atoms embedded in an eight-membered Pd4P4 ring. An X-ray diffraction study showed that 2 crystallizes in the triclinic space group P with a = 17.607(7) A, b = 17.944(7) A, c = 18.792(7) A, alpha = 107.120(12) degrees, beta = 96.344(13) degrees, gamma = 117.087(15) degrees . Each molecule contains four palladium atoms in a distorted square-planar coordination formed by one chlorine and three phosphorus atoms. Two of the latter belong to bridging primary phosphanides and the remaining one is contributed by a terminal PH2CH2Fc ligand. The coordination environments of neighboring metal centers adopt an almost perpendicular mutual orientation. The reaction of 2 equiv of 1 with [Pt(cod)Cl2] at 323 K yielded the analogous Pt(II) tetramer of formula [Pt(PH2CH2Fc)Cl(mu-PHCH2Fc)]4 (3), which was fully characterized by multinuclear and dynamic NMR, IR, and elemental analyses. Single-crystal X-ray diffraction on 3 confirmed the tetranuclear arrangement in the solid state, but orientational disorder of the molecule precludes a more detailed discussion of the structure. Low-temperature NMR experiments in CD2Cl2 showed the presence of two slowly interconnecting conformers. Reaction of 1 and [M(cod)Cl2] (M = Pd or Pt) at lower temperatures (273 K for Pd, 295 K for Pt) in dichloromethane allowed the detection in solution of the mononuclear species cis-[M(PH2CH2Fc)2Cl2] (M = Pd, 4; M = Pt, 5) which, upon heating, transformed into the tetramers 2 and 3, respectively. Solid samples of 4 and 5 could be isolated after workup at low temperature and were characterized by conventional spectroscopic methods.  相似文献   

14.
Electron transfer (ET) rate kinetics through n-alkanethiol self-assembled monolayers (SAMs) of alkanethiols of different chain lengths [Me(CH2)nSH; n=8, 10, 11, 15] on Au and Hg surfaces and ferrocene (Fc)-terminated SAMs (poly-norbornylogous and HS(CH2)12CONHCH2Fc) on Au were studied using cyclic voltammetry and scanning electrochemical microscopy (SECM). The SECM results allow determination of the ET kinetics of solution-phase Ru(NH3)63+/2+ through the alkanethiol SAMs on Au and Hg. A model using the potential dependence of the measured rate constants is proposed to compensate for the pinhole contribution. Extrapolated values of koML for Ru(NH3)63+/2+ using the model follow the expected exponential decay (beta is 0.9) for different chain lengths. For a Fc-terminated poly-norbornyl SAM, the standard rate constant of direct tunneling (ko is 189+/-31 s(-1)) is in the same order as the ko value of HS(CH2)12CONHCH2Fc. In blocking and Fc SAMs, the rates of ET are demonstrated to follow Butler-Volmer kinetics with transfer coefficients alpha of 0.5. Lower values of alpha are treated as a result of the pinhole contribution. The normalized rates of ET are 3 orders of magnitude higher for Fc-terminated than for blocking monolayers. Scanning electron microscopy imaging of Pd nanoparticles electrochemically deposited in pinholes of blocking SAMs was used to confirm the presence of pinholes.  相似文献   

15.
Metal-molecule-metal junctions were fabricated by contacting Au-supported alkyl or benzyl thiol self-assembled monolayers (SAMs) with an Au-coated atomic force microscope (AFM) tip. The tip-SAM microcontact is approximately 15 nm(2), meaning the junction contains approximately 75 molecules. Current-voltage (I-V) characteristics of these junctions were probed as a function of SAM thickness and load applied to the microcontact. The measurements showed: (1) the I-V traces were linear over +/-0.3 V, (2) the junction resistance increased exponentially with alkyl chain length, (3) the junction resistance decreased with increasing load and showed two distinct power law scaling regimes, (4) resistances were a factor of 10 lower for junctions based on benzyl thiol SAMs compared to hexyl thiol SAMs having the same thickness, and (5) the junctions sustained fields up to 2 x 10(7) V/cm before breakdown. I-V characteristics determined for bilayer junctions involving alkane thiol-coated tips in contact with alkane thiol SAMs on Au also showed linear I-Vs over +/-0.3 V and the same exponential dependence on thickness. The I-V behavior and the exponential dependence of resistance on alkyl chain length are consistent with coherent, nonresonant electron tunneling across the SAM. The calculated conductance decay constant (beta) is 1.2 per methylene unit ( approximately 1.1 A(-)(1)) for both monolayer and bilayer junctions, in keeping with previous scanning tunneling microscope and electrochemical measurements of electron transfer through SAMs. These measurements show that conducting probe-AFM is a reliable method for fundamental studies of electron transfer through small numbers of molecules. The ability to vary the load on the microcontact is a unique characteristic of these junctions and opens opportunities for exploring electron transfer as a function of molecular deformation.  相似文献   

16.
The synthesis of a new, all-phosphorus pincer PP(NEt2)P ligand L3(NEt2), which is derived from 2-indolylphosphine and features a central N(2)P(NEt(2)) core, is described. This 'PPP' species shows coordination toward Rh as a neutral trisphosphine ligand. Tridentate diphenylphosphine-derived PP(H)P ligands L1(H) and L2(H), featuring a secondary phosphine core, show 'ambivalent' coordination, acting as persistent neutral triphosphine ligands with Rh, and as easily-formed monoanionic phosphido(bisphosphine) pincer ligands toward Pd. These subtle differences, which might be more general for group 9 and 10 metal complexes with this ligand set, are explained by comparative DFT calculations (BP86; def2-TZVP level of theory) for the Rh and Pd species involved, including those with the structurally related PN(H)P ligands. The optimized structure for complex PdCl(L2) indicates minimal overlap of available Pd d-orbitals with the lone pair of the central, deprotonated phosphorus atom (formally a phosphido fragment), suggesting that it behaves predominantly like a bulky phosphine instead of a phosphido fragment.  相似文献   

17.
The noncovalent synthesis of "layer-block" metallodendrimers containing hydrophobic shells of covalent dendritic wedges at the periphery is described. Starting from first- and second-generation Fréchet wedges having phosphines at their focal point, convergent dendritic growth yields third- and fourth-generation metallodendrimers in which the coordination of nitriles, pyridines, and phosphines to SCS Pd(II) pincers is used as the assembly motif. In this convergent growth, the number of terminal hydrophobic phosphine wedges increases with generation. The solubility of the dendritic structures in apolar organic solvents such as chloroform and dichloromethane increases accordingly, in contrast to previously reported metallodendrimers. All dendritic structures were characterized by (1)H and (31)P NMR spectroscopy, elemental analysis, and MALDI-TOF mass spectrometry.  相似文献   

18.
The imaging of ultrafine Au, Pd, CdS, and ZnS particles prepared in reverse micelles has been studied by atomic force microscopy (AFM). Mica substrates, derivatized with a monolayer of amine or thiol-terminated silanes, were used to immobilize the particles. The substrates were exposed to reverse micellar solutions containing the particles and were then immersed in appropriate solvent media to remove surfactants. This resulted in a partial coating of the surfaces by the particles. The particle size was estimated as the height of protrusion, shown on the AFM images. The size values for the Pd and CdS particles, thus obtained, were found to be almost identical to those obtained by transmission electron microscopy (TEM), whereas those for the Au and ZnS particles were larger than those obtained by TEM. Scanning electron microscopy showed that the Au particles tended to aggregate on the surfaces, while Pd particles were isolated from one another. Copyright 2000 Academic Press.  相似文献   

19.
Two unsymmetrical PCN pincer Pd(II) complexes 3a3b which are based on (pyrazolyl)aryl phosphinite ligands and contain two fused six-membered palladacycles have been synthesized from 3-(3,5-dimethylpyrazol-1-ylmethyl)benzyl alcohol (2) by one-pot phosphorylation/palladation reaction via C–H bond activation of the related ligands. The pyrazole-coordinated phosphine-free Pd(II) complex (4) was also isolated in the preparation of pincer complex 3a. The new complexes were characterized by elemental analysis, 1H NMR, 13C NMR, 31P {1H} NMR (for pincer complexes) and IR spectra. And the molecular structures of 3b and 4 have been further determined by X-ray single-crystal diffraction. The pincer Pd complexes 3a and 3b exhibited rather low activity in the allylation of benzaldehyde.  相似文献   

20.
A series of bis(tert-butylphosphine)- and bis(cyclohexylphosphine)-functionalized Pd(II) monomers and polyamino (DAB) dendritic catalysts were synthesized and investigated for Sonogashira carbon-carbon coupling reactions in a copper-free procedure. The influence of phosphine substituents (tBu versus Cy) on the reaction kinetics was investigated by a GPC technique to monitor the reactions. The dendritic catalysts containing the cyclohexylphosphine ligands could be recovered and reused without loss of efficiency until the fifth cycle. The dendritic Pd(II) catalysts show a negative dendritic effect, that is, the catalyst efficiency decreases as the dendrimer generation increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号