首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper free acid and uranium present together in the range of 0.05–3.0 meq and 20–250 mg, respectively, have been determined by potentiometric titration, using Na2SO4 and (NH4)2SO4 complexants and NaOH and Na2CO3 as titrants. The results are presented as percentage recovery of free acidity and uranium over the range studied. It has been shown that percentage recovery of free acidity suggests a bias which varied from –5% to +74% at different free acidity and uranium concentrations for the Na2SO4–NaOH, Na2SO4–Na2CO3 and (NH4)2SO4–NaOH complexant — titrant combinations. The percentage recovery of uranium always showed a positive bias which could be up to +8% for extreme free acidity — uranium ratios in the case of Na2SO4–Na2CO3 complexant — titrant combination. For the other Na2SO4–NaOH and (NH4)2SO4–NaOH complexant — titrant combinations a positive bias of up to only +4% has been noticed.  相似文献   

2.
Aqueous solutions of sodium chloride, potassium chloride, sodium sulfate, and potassium sulfate can be mixed in six ways to give ternary mixtures. Two of these have already been studied and results are now presented for the remaining four systems: H2O–NaCl–K2SO4, H2O–Na2SO4–K2SO4, H2O–KCl–Na2SO4, and H2O–KCl–K2SO4.  相似文献   

3.
The electrodeposition of uranium and trace quantities of239Pu,234Th,144Ce on a stainless steel disk has been investigated from 0.5–2.0M NaOH and the two-phase system: extract of actinides in TBP-aqueous solution of NaOH. The electrodeposition yield of the above elements reaches 98–100% in 40 min of electrolysis with current density 0.4–0.5 A/cm2. The presence of 0.5M Na2CO3, 2.0M NaNO3, 2.0M NaNO2, 0.2M NaF in alkaline solutions does not decrease the electrodeposition yield. The electrodeposited films meet all the requirements of -spectrometry. The uranium oxidation states (V) and (IV) have been determined in the electrodeposited films.  相似文献   

4.
Apparent molar heat capacities and volumes have been determined for aqueous solutions of the mixed electrolytes Na5DTPA + NaOH, Na3CuDTPA + NaOH, and NaCu2DTPA + NaOH, and the single electrolyte Na3H2DTPA (DTPA=diethylenetriaminepentaacetic acid) at temperatures from 10 to 55°C. The experimental results have been analyzed in terms of Young's rule with the Guggenheim form of the extended Debye–Hückel equation and the Pitzer ion-interaction model. These calculations led to standard partial molar heat capacities and volumes for the species H2DTPA3–(aq), DTPA5–(aq), CuDTPA3–(aq), and Cu2DTPA(aq) at each temperature. The partial molar properties at 0.1 m ionic strength were also calculated. The standard partial molar properties were extrapolated to elevated temperatures with the revised Helgeson–Kirkham–Flowers (HKF) model. Values for the partial molar heat capacities from the HKF model have been combined with the literature data to estimate the ionization constants of H2DTPA3–(aq) and the formation constant of the CuDTPA3–(aq) copper complex at temperatures up to 300°C.  相似文献   

5.
Fission-produced 131I and 103Ru radionuclides have been separated sequentially by distillation from H2SO4 of controlled chemical composition. The thermal-neutron irradiated uranium trioxide targets were digested in 2M NaOH solution and then, the supernatant solution was acidified to 20% H2SO4 with addition of a few drops of H2O2 solution. On boiling for 3.5 hours, ≥99.99%131I was volatilized, passed through 3M H2SO4 traps, and then collected in 0.1M NaOH + 0.01% Na2S2O3 solution with a recovery yield of 73.6%. The product radionuclide had high radiochemical and radionuclidic purities. After separation of 131I, the fission-product solution was acidified to 40% H2SO4 acid containing KMnO4 as an oxidant and boiled for 40 minutes. Ruthenium nuclides were volatilized and collected in 0.1M NaOH solution. Gamma-ray spectrometry showed that the separation and the recovery yields of 103Ru were ≥99.99 and 65%, respectively, with ~92% radionuclidic purity, measured immediately after separation. The radionuclides of 132I and 106Rh were the main contaminants detected in the obtained 103Ru product solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The solubility of Na2SO4 (s) (thenardite) and the interactions between magnetiteand aqueous Na2SO4 near the critical point of water have been determined in azirconium-alloy flow reactor at temperatures 350°C t 375°C and isobaricpressures 190 p 305 bar. The experimental solubility data are describedwell as a function of temperature and solvent density 1 byln x(Na2SO4, aq.) = –10.47 – 27550/T +(4805/T) ln 1.The interaction between magnetite and Na2SO4 (aq.) was examined from 250 to370°C at molalities near the saturation composition of Na2SO4 (s). While no solidreaction products were observed, HS (aq.) was observed to form above 350°Cby sulfate reduction, as a product of the reaction8 Fe3O4(s) + Na2SO4 (aq.) + H2O(l)= 12 Fe2O3 (s) + NaHS (aq.) + NaOH (aq.).The reduction reaction appears to be controlled by surface reaction kinetics, ata level well below the equilibrium molality of HS (aq.). Metallic iron reactedwith Na2SO4 (aq.) in a similar fashion at temperatures above 350°C, to yieldhigher molalities of HS (aq.).  相似文献   

7.
The relative sound speed of mixtures of aqueous solutions of NaCl–MgSO4 and MgCl2–Na2SO4 at I=0.1 and 0.5m have been determined at 5, 15, and 25°C and pressures to 1000 bars. The resulting sound speeds, adiabatic and apparent molal compressibilities have been compared to results estimated from binary solutions using an additivity principle — Young's rule. The estimated sound speeds agree with the measured values for the NaCl–MgSO4 system to ±0.15 m-sec–1 and for the Na2SO4–MgCL2 system to ±0.20 m-sec–1. The deviations increase with increasing ionic strength (±0.08 m-sec–1 at I=0.1 and ±0.25 m-sec–1 at I=0.5 m).The sound speed of seawater have also been estimated from 0 to 40°C, 0.1 to 0.7 ionic strength and 0 to 1000 bars. The estimates were found to be in good agreement (±0.4 m-sec–1) with the measured values.These results indicate that reasonable estimates of the adiabatic PVT properties of dilute mixtures of electrolyte solutions can be made using the additivity principle, without excess mixing terms.  相似文献   

8.
The volume-fixed mutual diffusion coefficients of Na2SO4–H2O and MgSO4–H2O have been measured, from dilute solutions to near saturation, to an accuracy of 0.1–0.2% by free-diffusion Rayleigh interferometry. These results are compared to other available diffusion data for these salts. The diffusion coefficients of Na2SO4–H2O and MgSO4–H2O decrease regularly with increasing concentration, while those of many other salts exhibit both a maximum and a minimum as a function of concentration. A few diffusion coefficients have also been measured for KCl–H2O.Reference to a company or product names does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.University of Illinois at Urbana-Champaign; tenure served as a participating guest at Lawrence Livermore Laboratory.  相似文献   

9.
Isopiestic results are reported for the quaternary system H2O–NaCl–Na2SO4–MgSO4. The excess free energies for mixing the double salt Na2 Mg(SO4)2 with NaCl are fairly large and negative, as also are the free energies for mixing the three salts to form the quaternary aqueous system.  相似文献   

10.
When the sodium ion (Na+) concentration is increased above 0.5 mol-dm−3 (M), the concentrations of dissolved silica in aqueous sodium chloride (NaCl) and sodium nitrate (NaNO3) solutions decrease because of the salting out effect. On the other hand, the concentration of the dissolved silica in aqueous sodium sulfate (Na2SO4) solutions increases monotonously as the concentration of Na+ is increased above 0.5 M. The purpose of this study is to determine the reasons why the salting-out effect is not observed in Na2SO4 solutions. FAB-MS (Fast Atom Bombardment Mass Spectrometry) was used to sample directly the silica species dissolved in aqueous Na2SO4, NaCl, and NaNO3 solutions. In the FAB-MS spectra of these solutions, the peak intensity ratios of the linear tetramer to the cyclic tetramer largely increased for Na+ concentrations between (0.1 and 1) M. This shows that some characteristics of the Na2SO4 solutions are similar to those of the NaCl and NaNO3 solutions. In Na2SO4 solutions, however, when the concentration of Na+ is higher than 1 M, the peak intensity of the dimer is much higher than those of the other silicate complexes. In Na2SO4 solutions, the SO42− ion undergoes partial hydrolysis to form HSO4 and OH is produced. In particular, in the range where the concentration of SO42− is high, the pH of the solution increases slightly. This higher pH yields more dimers from the hydrolysis of silicate complexes. This increase in dimer production agrees with the observation that silica dissolves in sodium hydroxide (NaOH) solutions mainly as a dimer when the concentration of NaOH is less than 0.1 M. In Na2SO4 solutions at high concentrations, a salting-out effect is not observed for silica. This is due to the increase in the concentration of OH, which accelerates the hydrolysis of silica and results in dimer formation.  相似文献   

11.
The possibility of sulphur determination in uranium matrix by total reflection x-ray fluorescence spectrometry (TXRF) has been studied. Calibration solutions and samples of sulphur in uranium matrix were prepared by mixing uranium in form of a standard uranyl nitrate solution and sulphur in the form of Na2SO4 standard solution, prepared by dissolving Na2SO4 in Milli-Q water. For major element analysis of sulphur, it was determined without separation of uranium whereas for the trace level determinations, uranium was first separated by solvent extraction using 30% tri-n-butyl phosphate (TBP) in dodecane as an extractant. In order to countercheck the TXRF results, a few samples of Rb2U(SO4)3, a chemical assay standard for uranium, were diluted to different dilutions and sulphur content in these solutions were determined. The TXRF determined results for trace determinations of sulphur in these diluted solutions were counterchecked after addition of another uranium solution, so that sulphur is at trace level compared to uranium, separating uranium from these solution mixtures using TBP extraction and determining sulphur in aqueous phase by TXRF. For such TXRF determinations, Co was used as internal standard and W Lα was used as excitation source. The precision and accuracy of the method was assessed for trace and major element determinations and was found to be better than 8% (1σ RSD) and 15% at a concentration level of 1 μg/mL of sulphur measured in solutions whereas for Rb2U(SO4)3, these values were found to be better than 4 and 13%, respectively.  相似文献   

12.
The applicability of a new leaching method, the HSS (H2O2-Na2SO4-H2SO4) system, in the extraction of uranium from Saricaolu-Bergama Region low grade ore, and the efficiency of Acigol Lake (Denizli)-Turkey water as a natural source of Na2SO4 has been investigated. The effect of H2SO4 concentration, temperature, leaching time, H2O2 and Na2SO4 concentrations and the amount of Acigol Lake water on the extraction of uranium was examined. HSS was found suitable for the extraction of uranium from Saricaolu-Bergama Region samples and it was observed that the acid consumption could be decreased by adding Na2SO4.  相似文献   

13.
Zusammenfassung Zur quantitativen Analyse der Isomeren DNA und DNC, des Substanzgemisches und von Mischungen mit anderen Nitroderivaten wird die Polarographie von 0,1–0,3 g-Proben in Pyridin in Gegenwart von 1. NH4Cl, NH4OH, Na2SO3 und Nigrosinlösung; 2. Na2SO3 und Nigrosinlösung und 3. NH4Cl, NH4OH, Na3SO3 und Gelatinelösung mit einer Genauigkeit von ± 3% und einer Empfindlichkeit von 10–2 durchgeführt.
Polarographic determination of 1,5-dihydroxy-4,8-dinitroanthraquinone (DNA) and its isomer 1,8-dihydroxy 4,5-dinitroanthraquinone(DNC)
Quantitative analysis is carried out with the isomeric compounds, there mixtures and mixtures with other nitro derivatives. 0.1 to 0.3 g samples are applied in pyridine and polarographic recording is performed in the presence of 1) NH4Cl, NH4OH, Na2SO3 and nigrosine, 2) Na2SO3 and nigrosine, 3) NH4Cl, NH4OH, Na2SO3 and gelatin. Accuracy is ± 3%, sensitivity 10–2.
  相似文献   

14.
The title method was successfully used for collecting239,249Pu from 200 litres of seawater by coprecipitation with 16 g FeSO4·7H2O under redcing conditions witout filtering. The plutonium is leached by concentrate HNO3+HCl from the coprecipitate and the solid particles. The precipitate is heated at 400°C and digested in aqua regia. Na2SO3 and NaNO2 have been applied to obtain the Pu4+ valence state in 0.5–1N HNO3 for different samples. Plutonium and thorium are coadsorbed on anionic resin from 8N HNO3. The column is eluted with 8N HNO3 containing fresh NaNO2 to keep the Pu4+ state for uranium decontaination. The system of the column is changed from 8N HNO3 to concentrated HCl with 50 ml concentrated HCl containing a few milligrams of NaNO2. Furtheer decontaimination of torium was achieved by elution with concentrated HCl instead of 9N HCl. The plutonium is successfully stripped by H2O, NaOH, 2N HNO3 and 0.5N HNO3 containign 0.01M NaNO3. The chemica yield of plutonium for a 2001 seawate sample is 60–80%. The resolution of the electroplated thin source is very good.  相似文献   

15.
Humic acids and associated radionuclides were extracted from several soil samples with a significant organic matter content, such as peaty soils and forest soil layers. Extractions were made using two alkaline solutions (Na4P2O7 0.1 mol·1–1 and NaOH 0.1 mol·1–1 under N2). The humic acid content in the extract was determined by the capillary zone electrophoresis technique (CZE) and associated radiocaseium was determined by gamma spectrometry. After analizing a large number of samples and studying the relationship between humic acid and organic matter content it was possible to conclude that the CZE technique may be a good alternative to classical techniques in humic acid determinations, with NaOH extractions leading to higher results than Na4P2O7. Furthermore, the quantification of the radiocaseium desorbed by applying different extractant reagents (NaOH, Na4P2O7, NH4AcO and CaCl2) showed that there may be some organic matter-radionuclide interations, other than those originated by humic acids. which may govern radionuclide retention in soils with a high content of organic matter.  相似文献   

16.
The nuclear properties of99mTc radionuclide are ideal for organ imaging. Study of the technetium transport across supported liquid membranes has been performed to get data for its separation from other elements. Tri-n-octylamine diluted in xylene was used to constitute the liquid membranes, supported in polypropylene microporous films. Stripping on the product solution side was performed with dilute NaOH solutions. The effect of sulphuric acid, nitric acid and hydrochloric acid in the feed on transport of99mTc as TcO 4 ions has been studied. The permeability of the given ions determined from kinetic activity data has been found to be in the order of PH2SO4>PHCl>PHNO3. The flux values have been calculated based on this permeability data. The increase in carrier concentration has shown an increase in flux and permeability values to a given optimum concentration. The increase in temperature has been found to reduce the transport of Tc ions. The optimum conditions for transport of99mTc for the given acid concentration have been determined. Mechanism of Tc ion transport has also been provided based on chemical reactions involved at the membrane interfaces and uptake of Tc ions by the membrane. MoO 4 2– ions do not permeate through membrane under optimum conditions of transport for TcO 4 2– ions from H2SO4 solution.  相似文献   

17.
Synergism is observed in the extraction of uranium(VI) by the binary mixture of Aliquat 336 and PC 88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) from 0.5–6M HNO3 solution showing a maximum at 3M. In H2SO4 medium, antagonism at lower acidity and slight synergism at higher acid concentrations have been observed. Synergism occurs in the extraction of Am(III) from nitrate solutions when a mixture of Aliquat 336 and TOPO is used.  相似文献   

18.
Summary The polarography of hexavalent uranium in sulphuric acid solutions of different concentrations and solutions containing sodium sulphate is studied. In 0.01 M H2SO4 three waves are obtained corresponding to the successive reduction of UVI to UV, UV to UIV and UIV to UIII. The second and third waves intermingle by increasing the H2SO4 concentration up to 0.055 M or by adding Na2SO4 or sulphosalicylic acid. In 0.25 M H2SO4 or in the presence of EDTA the second wave shifts to less negative potentials and intermingles with the first wave, forming a single wave along which reduction of UVI gives a mixture of UV and UIV. The diffusion current of this wave increases up to 1 M H2SO4 and then decreases above this acidity. The diffusion current measured at –0.6 V is proportional to the UVI concentration in the presence of 0.25–0.6 M H2SO4. This is not the case in the presence of EDTA. The proportionality is better at lower than at higher acidity.Part I: See Z. analyt. Chem.174, 4 (1960).  相似文献   

19.
Summary Organosphosphate pesticides have been found extractable by headspace solid-phase microextraction (SPME), and the best conditions of their extraction from human whole blood and urine samples have been investigated. The body fluid samples containing nine pesticides (IBP, methyl parathion, fenitrothion, malathion, fenthion, isoxathion, ethion, EPN and phosalone) were heated at 100°C in a septum-capped vial in the presence of various combinations of acid and salts, and SPME fiber was exposed to the headspace of the vial to allow adsorption of the pesticides before capillary gas chromatography (GC) with nitrogen-phosphorus detection. The heating with distilled water/HCl/(NH4)2SO4/NaCl and with distilled water/HCl gave the best results for urine and whole blood, respectively. Recoveries of the nine pesticides were 0.8–10.6% except for phosalone (0.03%) for whole blood, and 3.8–40.2% for urine. The calibration curves for the pesticides showed linearity in the range of 50–400 ng/0.5 mL for whole blood except for malathion (100–400 ng/0.5 mL whole blood) and 7.5–120 ng/0.5 mL for urine except for phosalone (15–120 ng/0.5 mL urine) with detection limits of 2.2–40 ng/0.5 mL for whole blood and 0.8–12 ng/0.5 mL for urine.  相似文献   

20.
Quantitative determination of uranium in (U, Pu)O2 fuels is usually done by the DAVIES-GRAY method. High concentrations of phosphoric acid in the analytical waste generated by this method make the revocery of plutonium rather complex. Studies on the recovery of plutonium from nitric acid medium containing different concentrations of H3PO4 by conventional anion-exchange procedure reveal that more than 90% of the plutonium can be easily recovered when the phosphoric acid concentration is less than 0.5 M in the solution. A method was developed for the determination of uranium in the presence of plutonium, which involves the reduction of U(VI) to U(IV) by Fe(II) in a medium of 3.5M H3PO4 +4.5M H2SO4 instead of 10–11M H3PO4 so as to have the H3PO4 concentration 0.6M in the waste. A number of determinations of uranium in UO2(NO3)2 working standard solutions and (U, Pu) synthetic solutions with uranium at the 3–7 mg level were carried out by this method. The precision obtained was better than ±0.2% and the accuracy was also within the precision limits. The resulting analytical waste generated was directly subjected to anion exchange separation for the recovery of plutonium which was found to be more than 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号