共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The void fraction in liquid slugs has been determined for air—water fiow in horizontal and near-horizontal pipes by a newly-developed conductance probe technique. A semi-empirical correlation has been developed and compared with the present measurements and available data. This correlation predicts reasonably well the observed effects of diameter, inclination and physical properties. 相似文献
4.
A three-dimensional bubble-tracking model of subcooled nucleate boiling flow in a vertical channel at low-pressure conditions
is proposed with specific application to the case of boiling in an annulus with a central heating rod. Vapour is distributed
in the liquid in the form of individually tracked bubbles. The overall behaviour of the liquid–vapour system results from
motion, interaction, coalescence and boiling mechanisms prescribed mostly at the level of bubbles. Bubbles are nucleated at
nucleation sites randomly distributed over the heated surface. After nucleation, bubbles slide on the heated wall, detach
and then migrate into the lower-temperature region away from the heated surface, where they condense. The proposed model was
applied to experiments on subcooled boiling from Purdue University (USA). Experimental and calculated void fraction radial
profiles at different axial locations are compared. 相似文献
5.
Hydrodynamic and thermal characteristics of flow boiling in a non-uniformly heated microchannel were studied. Experiments were performed with a single microchannel and a series of microheaters to study the microscale boiling of water under axially non-uniform heat input conditions. A simultaneous real time visualization of the flow pattern was performed with the measurement of experimental parameters. Tests were performed over a mass flux of 309.8 kg/m2 s, and heat flux of 200–600 kW/m2. Test results showed different fluctuations of heated wall temperature, pressure drop, and mass flux with variations of the heat input along the flow direction. The unique periodic flow boiling in a single microchannel was observed at all heat flux conditions except for the increasing heat input distribution case which is the nearly uniform effective heat input distribution condition. The instability is correlated with flow pattern transition. For the nearly uniform effective heating condition, no fluctuation of the wall temperature, pressure drop, or mass flux was observed. We can relieve the instability by increasing total heat input along the flow direction and predict the instability using the transition criteria and flow pattern map. 相似文献
6.
A fast response, linearized X-ray void measurement system has been used to obtain statistical measurements in normally fluctuating air-water flow in a rectangular channel. It is demonstrated that the probability density function (PDF) of the fluctuations in void fraction may be used as an objective and quantitative flow pattern discriminator for the three dominant patterns of bubbly, slug, and annular flow. This concept is applied to data over the range of 0.0 to 37 m/sec mixture velocities to show that slug flow is simply a transitional, periodic time combination of bubbly and annular flows. Film thicknesses calculated from the PDF data are similar in magnitude in both slug and annular flows. Calculation of slug length and residence time ratios along with bubble lengths in slug flow are also readily obtainable from the statistical measurements. Spectral density measurements showed bubbly flow to be stochastic while slug and annular flows showed periodicities correlatable in terms of the liquid volume flux. 相似文献
7.
By using unique experimental techniques and carefully constructed experimental apparatus, the characteristics of flow boiling of water in microscale were investigated using a single horizontal rectangular microchannel. A polydimethylsiloxane rectangular microchannel (Dh = 103.5 and 133 μm) was fabricated by using the replica molding technique, a kind of soft lithography. A piecewise serpentine platinum microheater array on a Pyrex substrate was fabricated with the surface micromachining MEMS technique. Real time flow visualization of the phase change phenomena inside the microchannel was performed using a high speed CCD camera with microscope. The experimental local boiling heat transfer coefficients were studied, and single bubble inception, growth, and departure, as well as elongated bubble behavior were analyzed to elucidate the microscale heat transfer mechanisms. Tests were performed for mass fluxes of 77.5, 154.9, and 309.8 kg/m2 s and heat fluxes of 180–500 kW/m2. The effects of mass flux, heat flux, and vapor qualities on flow boiling heat transfer in a microchannel were studied. 相似文献
8.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region. 相似文献
9.
Experiments were conducted to analyze flow boiling characteristics of water in a single brass microchannel of 25 mm length, 201 μm width, and 266 μm depth. Different heat flux conditions were tested for each of two different mass flow rates over three different values of inlet fluid temperature. Temporal and spatial surface temperature profiles were analyzed to show the relative effect of axial heat conduction on temperature rise along the channel length and the effect of flow regime transition on local surface temperature oscillation. Vapor bubble growth rate increased with increasing wall superheat. The slower a bubble grew, the further it was carried downstream by the moving liquid. Bubble growth was suppressed for increased mass flux while the vapor bubble was less than the channel diameter. The pressure spike of an elongating vapor bubble was shown to suppress the growth of a neighboring bubble by more than 50% of its volume. An upstream progression of the Onset of Bubble Elongation (OBE) was observed that began at the channel exit and progressed upstream. The effects of conjugate heat transfer were observed when different flow regime transitions produced different rates of progression for the elongation sequence. Instability was observed at lower heat fluxes for this single channel experiment than for similar studies with multiple channels. 相似文献
10.
The analysis of the scattering induced by a dispersion of gas bubbles in a liquid medium on a collimated, monochromatic light beam, traversing the two-phase flow, allows for the direct measurement of the 2-D distribution of the line-average of the interfacial area density. The 2-D distribution of the line-average of the void fraction is deduced from that of the interfacial area density through an image processing algorithm. To demonstrate the technique, experiments are performed in a pool of water injected with air and illuminated with a CW argon ion laser. Since the bubble diameters range from a fraction of a millimeter to a few millimeters, the scattering processes are entirely in the Mie range. The limits of applicability of the technique and the measurement uncertainty are discussed. The results compare favorably with level-swell based measurements used as a reference. Received: 14 February 1997/Accepted: 4 February 1998 相似文献
11.
A non-intrusive technique to measure the two-dimensional distribution of line averaged void fraction in a two-phase flow
is discussed. A CCD camera is used to measure the attenuation of light as it passes through a bubbly flow, and this attenuation
is related to the bubble concentration. The technique is appropriate for microbubbly flows where the bubble size is much smaller
than the area imaged by a single pixel and where there are many bubbles attenuating light within each pixel. The measurement
system is calibrated by using a two-dimensional line source microbubble plume as a reference.
Revised: 30 March 2000/Accepted: 14 April 2000 相似文献
12.
13.
《International Journal of Multiphase Flow》1987,13(2):199-217
The propagation of spontaneous void fraction disturbances in a nitrogen-water flow has been studied through the statistical analysis of conductivity probe signals, for void fractions ranging from 0.1 to 0.5 and including the bubble-slug transition. The power spectral density function and the standard deviation of the void fraction have been computed for each probe, as well as the system phase factor (related to the wave velocity), the coherence function and the system gain factor between each pair of consecutive probes as functions of frequency. For bubble flow, the results are compatible with the results obtained by other authors. The transition from bubble to slug flow is associated with void fraction wave instabilities. Two kinds of instabilities seem to occur simultaneously: amplitude increase (system gain factor > 1) and wave-breaking. 相似文献
14.
15.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement. 相似文献
16.
17.
Void fraction measurements were made using capacitance method. Five capacitor configurations were manufactured and tested; parallel, strip-type plates, ring-type plates, unidirectional, and double-helix. The void fraction was simulated by nonflow air-paraffin wax, air-glass, air-wood, and air-Freon 113 systems. The relative statistical error in void fraction measurement was minimized by taking into account the spacing between the ends of the two electrodes. 相似文献
18.
Flow boiling heat transfer coefficients of CO2 have been measured in a single microchannel. Experiments were carried out in a horizontal stainless steel tube of 0.529 mm inner diameter, for three temperatures (−10, −5 and 0 °C), with the mass flux ranging from 200 to 1200 kg/m2 s and the heat flux varying from 10 to 30 kW/m2. The investigation covered qualities from zero to the dryout inception, i.e. pre-dryout conditions. Compared to larger microchannels and positive temperatures, a higher contribution of convective boiling was found, with a larger heat transfer coefficient than for pure nucleate boiling. Mainly two heat transfer regimes were found, depending on the boiling number (Bo). For Bo > 1.1 × 10−4, the heat transfer coefficient was highly dependent on the heat flux and moderately influenced by the quality and the mass flux. For Bo < 1.1 × 10−4, the heat transfer coefficient was hardly affected by the heat flux but strongly influenced by the quality and the mass flux. In addition, dryout results were reported. The effect of the mass flux on the dryout inception quality was found to be highly dependent on the heat flux and the saturation temperature. 相似文献
19.
This paper presents experimental investigations on Freon R141b flow boiling in rectangular microchannel heat sinks. The main
aim is to provide an appropriate working fluid for microchannel flow boiling to meet the cooling demand of high power electronic
devices. The microchannel heat sink used in this work contains 50 parallel channels, with a 60 × 200 (W × H) μm cross-section. The flow boiling heat transfer experiments are performed with R141b over mass velocities ranging from
400 to 980 kg/(m2 s) and heat flux from 40 to 700 kW/m2, and the outlet pressure satisfying the atmospheric condition. The fluid flow-rate, fluid inlet/outlet temperature, wall
temperature, and pressure drop are measured. The results indicate that the mean heat transfer coefficient of R141b flow boiling
in present microchannel heat sinks depends heavily on mass velocity and heat flux and can be predicted by Kandlikar’s correlation
(Heat Transf Eng 25(3):86–93, 2004). The two-phase pressure drop keeps increasing as mass velocity and exit vapor quality rise. 相似文献
20.
Carbon dioxide two-phase flow pressure drops have been investigated in a single horizontal stainless-steel micro-tube having a 0.529 mm inner diameter. Experiments were carried out in adiabatic conditions for four saturation temperatures of −10; −5; 0; 5 °C and mass fluxes ranging from 200 to 1400 kg/m2 s, for inlet qualities up to unity. Measurements have been compared to the predictions of well-known methods. The Müller-Steinhagen and Heck correlation and the Friedel correlation gave the best fit as well as the homogeneous model when the liquid viscosity is used to represent the apparent two-phase viscosity. Further, an analysis based on the homogeneous model has not shown any clear appearance of the laminar or the transition regimes in any given range of Reynolds number. The apparent viscosity of the two-phase mixture was found larger than the liquid viscosity at low vapour qualities, namely at the lowest temperatures. Hence, a new expression to determine the equivalent viscosity was suggested as a function of the reduced pressure. Lastly, the Chisholm parameter from the Lockhart-Martinelli correlation was found lower than expected and also mainly dependent on the saturation temperature. 相似文献