首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase-space kinetic theory for polymeric liquid mixtures has been further developed for molecular models without internal constraints. The theory provides expressions for the mass, momentum, and energy fluxes, each of which may in general be influenced by concentration, velocity, and temperature gradients. To illustrate the use of these results, the thermal conductivity for a dilute polymer solution is derived; the FENE dumbbell model is used to describe the mechanical behavior of the polymer chains. The Hookean dumbbell results can be obtained by letting the finite extensibility parameter b tend to infinity.Dedicated to Prof. Dr. J. Meissner on the occasion of his retirement from the chair of Polymer Physics at the Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland  相似文献   

2.
In a flowing polymeric liquid, molecular orientation will give rise to anisotropic conduction of heat. In this paper, a theory is presented relating the thermal conductivity tensor to the deformation history of the fluid. The basis of this theory is formed by the Hookean dumbbell. It is shown that the anisotropy of the thermal conductivity is proportional to the polymer contribution to the extra-stress tensor. This stress-thermal law makes it relatively simple to incorporate anisotropic heat conduction into the numerical simulation of a flowing polymeric liquid.  相似文献   

3.
We investigate four crucial properties for testing and evaluating a moment closure approximation of the FENE dumbbell model for dilute polymer solutions: non-negative configuration distribution function, energy dissipation, accuracy of approximation and computational expense. Through mathematical analysis, numerical experiments and comparisons with closure model FENE-P and FENE-YDL, we prove that the FENE-QE approximation has non-negative configuration distribution function, approximates the energy dissipation behavior of original kinetic theory and provides good accuracy. To improve the efficiency of this closure approximation, we introduce a piecewise linear approximation technique that greatly reduces the computational cost. This extension of FENE-QE, FENE-QE-PLA, is the closure model we recommend for simulating dilute polymer solutions.  相似文献   

4.
In this paper diffusion of a dilute solution of elastic dumbbell model macromolecules under non-isothermal conditions is studied. Using the center of mass definition for the local polymer concentration, the diffusive flux contains a thermal diffusion dyadic d T .  To get some idea of thermal diffusion d T is evaluated for steady state isothermal conditions. Explicit results are presented for some homogeneous flows. It is shown that if the polymeric number density is defined via the beads (of the dumbbell) – termed n b – then the diffusive flux j contains , where τ c is the intramolecular contribution to the bulk stress. Though the form of the diffusion equation for n b thus differs from the corresponding one for n, it is shown that for essentially unbounded systems differences between n and n b are small. Since the results involve the translational diffusion coefficient they can readily be taken over for Rouse coils. Received: 23 September 1997 Accepted: 5 June 1998  相似文献   

5.
Schneggenburger et al. [C. Schneggenburger, M. Kröger, S. Hess, An extended FENE dumbbell theory for concentration dependent shear-induced anisotropy in dilute polymer solutions, J. Non-Newtonian Fluid Mech. 62 (1996) 235] extended the original FENE dumbbell kinetic theory to describe concentration dependent shear-induced anisotropy in dilute polymer solutions by a mean-field approach. Besides providing an erratum to the above-mentioned paper and two revised figures we present related analytic results for steady shear and uniaxial elongational flow. Within the same framework we further consider a modified FENE potential and briefly discuss its implications.  相似文献   

6.
Starting from rigorous expressions derived from phase space kinetic theory for dumbbell models of polymer solutions, a new numerical approach is presented. It enables one to solve the Langevin equations governing the motion of the dumbbells in a confined geometry consistently with the momentum balance equation. As an example, we discuss the flow of a polymer solution between two parallel shearing planes. For this purpose, we consider linear and nonlinear dumbbell models and investigate typical phenomena such as, for example, the slip effect.  相似文献   

7.
We study the well-posedness of a multi-scale model of polymeric fluids. The microscopic model is the kinetic theory of the finitely extensible nonlinear elastic (FENE) dumbbell model. The macroscopic model is the incompressible non-Newton fluids with polymer stress computed via the Kramers expression. The boundary condition of the FENE-type Fokker-Planck equation is proved to be unnecessary by the singularity on the boundary. Other main results are the local existence, uniqueness and regularity theorems for the FENE model in certain parameter range.  相似文献   

8.
Numerical simulation is used to investigate the flow of polymer solutions around a periodic, linear array of cylinders by using three constitutive equations derived from kinetic theory of dilute polymer solutions: the Giesekus model; the finitely extensible, nonlinear elastic dumbbell model with Peterlin's approximation (FENE-P); and the FENE dumbbell model of Chilcott–Rallison (CR). In the Giesekus model, intramolecular forces are described by a Hookean spring, whereas a finitely extensible spring whose modulus is given by the Warner approximation is used in both the FENE-P and CR models. Hydro dynamic drag on the beads is taken to be anisotropic for the Giesekus model and isotropic for the other two models. The CR and FENE-P models differ subtly in their approximate treatment of the nonlinear force law. The three models exhibit very similar rheological behavior in viscometric flow and steady elongational flow, with the notable exception that the viscosity for the CR model is shear-rate independent. Finite element simulations are performed by using two different formulations: the elastic-viscous split-stress gradient (EVSS-G) method and a new variant of this formulation, the discrete EVSS-G (DEVSS-G) formulation, in which the elliptic stabilization term is added only to the discrete version of the momentum equation, and the constitutive equation is solved directly in terms of the polymer contribution to the stress tensor. Calculations are performed for all models up to a Weissenberg number We, where the configuration tensor 〈QQ〉 loses positive definiteness. However, by locally refining the mesh in the gap region, the positive definiteness of 〈QQ〉 is recovered. The flow and stress fields predicted by the three constitutive equations are qualitatively similar. A `birefringent strand' of highly stretched polymer molecules, which appears to emanate from the rear stagnation point in the cylinder, strengthens as We is increased. Not surprisingly, the molecular extension computed for the Giesekus model is considerably larger than that of the two FENE spring models. The drag force on the cylinders differs for the FENE-P and CR models, because of the difference in the shear-thinning viscosity resulting from the different approximations used in these models.  相似文献   

9.
This paper attempts to provide a theoretical basis for the use of Dissipative Particle Dynamics (DPD) in the area of viscoelastic flow modelling. To generate elasticity in the DPD base fluid, an extension of the DPD simulation model is proposed. The extension consists of assigning to each DPD particle a polymer strand end-to-end vector. The standard DPD evolution and interaction rules are likewise extended. By aid of kinetic theory, it is shown that the ensuing fluid dynamics is equivalent to the Navier-Stokes equation supplemented with a polymeric stress contribution. For specific choices of the evolution and interaction rules for the end-to-end vector the polymeric stress contribution can be put into correspondence with standard models, such as the Hookean dumbbell model.  相似文献   

10.
11.
We propose a two-fluid theory to model a dilute polymer solution assuming that it consists of two phases, polymer and solvent, with two distinct macroscopic velocities. The solvent phase velocity is governed by the macroscopic Navier–Stokes equations with the addition of a force term describing the interaction between the two phases. The polymer phase is described on the mesoscopic level using a dumbbell model and its macroscopic velocity is obtained through averaging. We start by writing down the full phase-space distribution function for the dumbbells and then obtain the inertialess limits for the Fokker–Planck equation and for the averaged friction force acting between the phases from a rigorous asymptotic analysis. The resulting equations are relevant to the modelling of strongly non-homogeneous flows, while the standard kinetic model is recovered in the locally homogeneous case.  相似文献   

12.
13.
Buoyant flows often contain regions with unstable and stable thermal stratification from which counter gradient turbulent fluxes are resulting, e.g. fluxes of heat or of any turbulence quantity. Basing on investigations in meteorology an improvement in the standard gradient-diffusion model for turbulent diffusion of turbulent kinetic energy is discussed. The two closure terms of the turbulent diffusion, the velocity-fluctuation triple correlation and the velocity-pressure fluctuation correlation, are investigated based on Direct Numerical Simulation (DNS) data for an internally heated fluid layer and for Rayleigh–Bénard convection. As a result it is decided to extend the standard gradient-diffusion model for the turbulent energy diffusion by modeling its closure terms separately. Coupling of two models leads to an extended RANS model for the turbulent energy diffusion. The involved closure term, the turbulent diffusion of heat flux, is studied based on its transport equation. This results in a buoyancy-extended version of the Daly and Harlow model. The models for all closure terms and for the turbulent energy diffusion are validated with the help of DNS data for internally heated fluid layers with Prandtl number Pr = 7 and for Rayleigh–Bénard convection with Pr = 0.71. It is found that the buoyancy-extended diffusion model which involves also a transport equation for the variance of the vertical velocity fluctuation gives improved turbulent energy diffusion data for the combined case with local stable and unstable stratification and that it allows for the required counter gradient energy flux.  相似文献   

14.
A model to relate the thermal conductivity tensor to the deformation of an amorphous polymeric material above the glass transition temperature is presented. The basis of the model is formed by the transient network theory for polymer melts. With this theory it is possible to calculate the average orientation of the macromolecular segments as a function of the history of the deformation. Combined with an expression which relates the thermal conductivity to the orientation of the molecules, this provides us with the information needed to calculate the heat conduction tensor. Despite the fact that the simplest possible network model is chosen, there is good agreement with the sparse, experimental results.  相似文献   

15.
This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo-Christov theory of heat and mass diffusion.  相似文献   

16.
哑铃式聚合物分子模型流变学数值研究   总被引:3,自引:1,他引:2  
范西俊 《力学进展》1990,20(1):11-23
本文介绍了求解哑铃式分子模型位形空间分布函数扩散方程的数值方法,以及用这种方法计算的若干分子模型的流变性质。在通常情况下,将这一方法与求解流动守恒方程的边界元法相结合,便有可能用一个得不到本构方程的分子模型去代替连续介质力学本构方程,来模拟聚合物流体的复杂流动。本文还讨论了这一方法某些令人感兴趣的特点。   相似文献   

17.
Data from iPP film casting experiments served as a basis to model the effect of flow on polymer crystallization kinetics. These data describe the temperature, width, velocity and crystallinity distributions along the drawing direction under conditions permitting crystallization along the draw length.In order to model the effect of flow on crystallization kinetics, a modification of a previously defined quiescent kinetic model was adopted. This modification consisted in using a higher melting temperature than in the original quiescent model. The reason for the modification was to account for an increase of crystallization temperature due to entropy decrease of the flowing melt. This entropy decrease was calculated from the molecular orientation on the basis of rubber elasticity theory applied to the entangled and elongated melt. The evolution of molecular orientation (elongation) during the film casting experiments was calculated using a non-linear dumbbell model which considers the relaxation time, obtained from normal stress difference and viscosity functions, to be a function of the deformation rate.The comparison between experimental distributions and model based crystallinity distributions was satisfactory.  相似文献   

18.
A review of several important constitutive equations is herein conducted with an eye towards determining those most suitable for use in modelling polymer melt processing. General principles are invoked for a priori screening of the equations without needing detailed comparison of the model predictions with experimental data. These principles, which are derived from continuum mechanics, thermodynamics and molecular kinetic theory, and dela with convection and diffusion of entangled polymer strands during flow, are: (1) During sudden deformations, the stress is a unique function of the total strain. (2) The second law of thermodynamics holds for all deformations. (3) The constitutive equation can be derived from a plausible molecular model which describes the convection and diffusion. (4) The model parameters can be determined by a reasonable number of rheometric experiments. Based on these principles, it is concluded that separable free energy models are the most promising. These are either BKZ integral models with a kernel factorable into a time-dependent and a strain-dependent part. or sets of Maxwell-type differential equations that employ a generalized convected derivative, and that are linear in stress in the absence of flow.  相似文献   

19.
The kinetic theory of nonlinear elastic dumbbells, with bead friction coefficients that depend linearly on the interbead distance, is used to obtain the elongational viscosity and the dumbbell stretching as a function of elongation rate. The results are obtained by solving numerically the “diffusion equation” for the configurational distribution function. No S-shaped curves were found for the elongational viscosity or for the mean-square end-to-end distance. Previous investigators did report S-shaped curves and related “hysteresis” effects. However, their results were based on using mathematical approximations that now appear to be inappropriate.  相似文献   

20.
Finger type double diffusive convective instability in a fluid-saturated porous medium is studied in the presence of coupled heat-solute diffusion. A local thermal non-equilibrium (LTNE) condition is invoked to model the Darcian porous medium which takes into account the energy transfer between the fluid and solid phases. Linear stability theory is implemented to compute the critical thermal Rayleigh number and the corresponding wavenumber exactly for the onset of stationary convection. The effects of Soret and Dufour cross-diffusion parameters, inter-phase heat transfer coefficient and porosity modified conductivity ratio on the instability of the system are investigated. The analysis shows that positive Soret mass flux triggers instability and positive Dufour energy flux enhances stability whereas their combined influence depends on the product of solutal Rayleigh number and Lewis number. It also reveals that cell width at the convection threshold gets affected only in the presence of both the cross-diffusion fluxes. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient and porosity modified conductivity ratio are found. An excellent agreement is found between the exact and asymptotic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号