首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An orbital ordering transition and electronic phase coexistence have been discovered in SrCrO3. This cubic, orbitally-degenerate perovskite transforms to a tetragonal phase with partial orbital order. The tetragonal phase is antiferromagnetic below 35-40 K, whereas the cubic phase remains paramagnetic at low temperatures. The orbital ordering temperature (35-70 K) and coexistence of the two electronic phases are very sensitive to lattice strain. X-ray measurements show a preferential conversion of the most strained regions in the cubic phase. This reveals that small fluctuations in microstrain are sufficient to drive long range separation of competing electronic phases even in undoped cubic oxides.  相似文献   

2.
王广涛  张敏平  李珍  郑立花 《物理学报》2012,61(3):37102-037102
强关联体系中的轨道有序及其成因一直是凝聚态物理研究的热点问题.轨道有序对于巨磁阻和 超导材料的研究有非常重要的地位.利用第一性原理计算研究了KCrF3的四方相和立方相中的轨道有序 及其成因.在四方相中, GGA和GGA+U两种方法计算结果都表明其基态是A型反铁磁和G型轨道有序. 对于立方结构, GGA方法得出铁磁半金属态是基态,而GGA+U(Ueff = 3.0 eV)得到的基态是A型 反铁磁绝缘体. 光电导测量是少数能从实验上观察到轨道有序的方法之一,因此计算了其光电导,并结合投影态密度讨论 了KCrF3中的轨道有序.最后找到了其轨道有序的成因:电子强关联效应,而非电-声子相互作用是其 轨道 有序的物理根源.  相似文献   

3.
We have studied the temperature and magnetic field dependence of the electrical resistivity of GdCu(6) and have co-related the results with the temperature dependence of heat capacity and magnetization. The magnetoresistance of GdCu(6) is found to be positive both in the paramagnetic and antiferromagnetic regimes. Within the antiferromagnetic regime, the magnetoresistance is very high and increases to still higher values both with increasing field and decreasing temperature. In the paramagnetic regime the magnetoresistance continues to exhibit a finite positive value up to temperatures much higher than that corresponding to the antiferromagnetic to paramagnetic phase transition. We have shown through quantitative analysis that both the temperature dependences of resistivity and heat capacity indicate the presence of spin fluctuations within the paramagnetic regime of GdCu(6). The field dependence of electrical resistivity indicates that the positive magnetoresistance in the paramagnetic phase is not related to the orbital motion of the conduction electrons in a magnetic field (the Kohler rule). In contrast, our analysis indicates that these spin fluctuations are responsible for the positive magnetoresistance observed within this paramagnetic regime. The nature of the field dependence of electrical resistivity is found to be qualitatively similar both in the antiferromagnetic and paramagnetic regimes, which probably indicates that spin fluctuations in the paramagnetic regime are of the antiferromagnetic type.  相似文献   

4.
We use exact diagonalization combined with mean-field theory to investigate the phase diagram of the spin-orbital model for cubic vanadates. The spin-orbit coupling competes with Hund's exchange and triggers a novel phase, with the ordering of t(2g) orbital magnetic moments stabilized by the tilting of VO6 octahedra. It explains qualitatively spin canting and reduction of magnetization observed in YVO3. At finite temperature, an orbital instability in the C-type antiferromagnetic phase induces modulation of magnetic exchange constants even in the absence of lattice distortions. The calculated spin structure factor shows a magnon splitting at q-->=(0,0,pi / 2) due to the orbital dimerization.  相似文献   

5.
A phase diagram reflecting the main features of the typical phase diagram of cuprate superconductors has been studied within the framework of the Ginzburg-Landau phenomenology in the vicinity of a tetracritical point, which appears as a result of the competition of the superconducting and insulating pairing channels. The superconducting pairing under repulsive interaction corresponds to a two-component order parameter, whose relative phase is related to the orbital antiferromagnetic insulating ordering. Under weak doping, the insulating order coexists with the superconductivity at temperatures below the superconducting phase transition temperature and is manifested as a weak pseudogap above this temperature. A part of the pseudogap region adjacent to the superconducting state corresponds to developed fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and can be interpreted as a strong pseudogap. As the doping level is increased, the system exhibits a phase transition from the region of coexistence of the superconductivity and the orbital antiferromagnetism to the usual superconducting state. In this state, a region of developed fluctuations of the order parameter in the form of quasi-stationary states of uncorrelated orbital circular currents exists near the phase transition line.  相似文献   

6.
The in-plane magnetoresistance (MR) in La(2-x)SrxCuO4 films with 0.03< x <0.05 has been studied in the temperature range 1.6 to 100 K, and in magnetic fields up to 14 T, parallel and perpendicular to the CuO2 planes. The behavior of the MR is consistent with a predominant influence of interaction effects at high temperatures, switching gradually to a regime dominated by spin scattering at low T. Weak localization effects are absent. A positive orbital MR appears close to the boundary between the antiferromagnetic and the spin-glass phase, suggesting the onset of Maki-Thompson superconducting fluctuations deep inside the insulating phase.  相似文献   

7.
8.
Ordering and quantum fluctuations of orbital degrees of freedom are studied theoretically for LaVO3 in the spin-C-type antiferromagnetic state. The effective Hamiltonian for the orbital pseudospin shows strong one-dimensional anisotropy due to the negative interference among various exchange processes. This significantly enhances the instability toward lattice distortions for the realistic estimate of the Jahn-Teller coupling by first-principle LDA+U calculations, instead of favoring the orbital singlet formation. This explains well the experimental results on the anisotropic optical spectra as well as the proximity of the two transition temperatures for spin and orbital orderings.  相似文献   

9.
The interactions between electrons in degenerate orbitals and between electrons and the lattice degrees of freedom have been treated by the Monte Carlo method taking into account the anharmonicity of ionic vibrations in the framework of the phenomenological model. The existence regions of the ferromagnetic and antiferromagnetic orbital orders have been found. Two critical temperatures have been determined at which the long-range orbital order disappears and the distribution of electrons over the orbitals becomes uniform. The correlation between the orbital ordering types and the thermal expansion coefficient has been established. It has been found that an increase in anharmonicity leads to the stabilization of the antiferromagnetic orbital ordering.  相似文献   

10.
A novel structure of orbital ordering is found in a Nd0.5Sr0.5MnO3 thin film, which exhibits a clear first-order transition, by synchrotron x-ray diffraction measurements. Lattice parameters vary drastically at the metal-insulator transition at 170 K (= T(MI)), and superlattice reflections appear below 140 K (= T(CO)). The electronic structure between T(MI) and T(CO) is identified as A-type antiferromagnetic with a d(x2-y2) ferro-orbital ordering. The new type of antiferro-orbital ordering characterized by the wave vector (1/4 1/4 1/2) in cubic notation emerges below T(CO). The accommodation of the large lattice distortion at the first-order phase transition and the appearance of the novel orbital ordering are brought about by the anisotropy in the substrate, a new parameter for the phase control.  相似文献   

11.
The longitudinal acoustic wave velocity and attenuation in BiFeO3 ceramics have been measured by ultrasonic pulse-echo technique at a frequency of 10 MHz in the temperature range from 4.2 K to 830 K. The anomalies observed in the sound velocity and attenuation behavior versus temperature are attributed to the assumed relaxation in the temperature range 200–500 K and antiferromagnetic phase transition at higher temperatures. Order parameter fluctuations along with magnetostriction are discussed as the factors determining the acoustic wave velocity anomaly in the vicinity of the antiferromagnetic phase transition point.  相似文献   

12.
The flopside spin structure, where the magnetic moments form two sublattices which at low temperatures are mutually perpendicular was first found in HoP and then in other rare-earth pnictides. There are large orbital contributions to the magnetic moments of these compounds and it had been thought that they play an important role in stabilizing the flopside spin structure. However, recently this spin structure has been found in GdMg. As Gd3+ is an S-state ion, there are negligible orbital effects. We have developed a model Hamiltonian which is able to explain both the occurence of initially a ferromagnetic phase and then at low temperature the flopside spin structure in two very dissimilar compounds GdMg and HoP. For GdMg we find that the competition between the near neighbor ferromagnetic and antiferromagnetic bilinear exchange interactions is such that while they produce a transition to a ferromagnetic phase at 110 K, an unusually small amount of biquadratic (quadrupolar) coupling is able to stabilize a flopside phase at low temperature which is able to resist collapse in a field as large as 150 kOe. For HoP we find that although anisotropic bilinear pair interactions - as for example pseudo-dipole - exist, they cannot be the primary origin of the flopside phase; quadrupole pair interactions are essential to explain the appearance of first the ferromagnetic and then the flopside phases found in HoP. On the basis of our model calculations we are able to explain the data extant on these compounds and we make some predictions which are open to experimental verification.  相似文献   

13.
Using the EPR method, the members of free radicals of the hydrazyl group have been studied within a wide temperature range. In all the samples at temperatures 0.05?3K the existence of a phase transition to an antiferromagnetic state is found out. Dynamics of critical fluctuations near the phase transition have been investigated. Two regimes of critical spin relaxation are discovered.  相似文献   

14.
Following the same strategy used for RVO3, thermal conductivity measurements have been made on a series of single-crystal perovskites RTiO3 (R=La,Nd,...,Yb). Results reveal explicitly a transition from an orbital liquid to an orbitally ordered phase at a magnetic transition temperature, which is common for both the antiferromagnetic and ferromagnetic phases in the phase diagram of RTiO3. This spin/orbital transition is consistent with the mode softening at T_{N} in antiferromagnetic LaTiO3 and is supported by an anomalous critical behavior at T_{c} in ferromagnetic YTiO3.  相似文献   

15.
The mean-field theory with the use of the slave-boson functional method has been generalized to take account of the spin- and/or orbital-ordered state in the doubly degenerate Hubbard model. Numerical calculations are presented of the antiferromagnetic orbital-ordered state in the half-filled simple-cubic model. The orbital order in the present theory is much reduced compared with that in the Hartree–Fock approximation because of the large orbital fluctuations. From a comparison of the ground-state energy, the antiferromagnetic orbital state is shown to be unstable against the antiferromagnetic spin state, although the situation becomes reversed when the exchange interaction is negative.  相似文献   

16.
The Monte Carlo method has been used to study phase transitions and the structure of the ground state of the antiferromagnetic Ising model on a body-centered cubic lattice taking into account the interactions of nearest and next nearest neighbors. All possible magnetic structures of the ground state have been obtained for the first time as a function of the ratio of exchange interactions r. It is shown that six different orderings in the ground state are possible in the system as a function of the r value. The phase diagram of the dependence of the critical temperature on the interaction of the next nearest neighbors is constructed. For the first time, a narrow region (2/3 < r ≤ 0.75) is found in the diagram where the transition from the antiferromagnetic phase to the paramagnetic phase occurs as a first-order phase transition. It is shown that the competition between exchange interactions at the value r = 2/3 does not lead to the frustration and degeneracy of the ground state.  相似文献   

17.
Using a functional renormalization group approach we study the zero temperature phase diagram of two-dimensional Bose-Fermi mixtures of ultracold atoms in optical lattices, in the limit when the velocity of bosonic condensate fluctuations is much larger than the Fermi velocity. For spin-1/2 fermions we obtain a phase diagram, which shows a competition of pairing phases of various orbital symmetry (s, p, and d) and antiferromagnetic order. We determine the value of the gaps of various phases close to half filling, and identify subdominant orders as well as short-range fluctuations from the renormalization group flow. For spinless fermions we find that p-wave pairing dominates the phase diagram.  相似文献   

18.
We report density functional studies of the (001) surface of magnetite that account for local Coulomb interactions. Iron cations in the surface layers exhibit charge and t2g orbital ordering that is coupled with the lattice strains. Orbital ordering is present for various surface stoichiometries and causes opening of the band gap Eg approximately 0.3 eV at the surface, such that the (001) surface of Fe3O4 remains insulating also in the high temperature cubic phase. The (radical 2 x radical 2)R45 degrees surface reconstruction is related to orbital ordering.  相似文献   

19.
Low temperature fluorination of BaFeO3−x using poly(vinylidene fluoride) leads to the formation of the oxide fluoride BaFeO2F. Mössbauer spectroscopy shows that this phase exhibits magnetic ordering at room temperature due to interactions between the Fe3+ ions, with an ordering temperature of 645 (±5) K. Neutron diffraction studies show that the phase has cubic symmetry and confirm the presence of magnetic ordering (G-type antiferromagnetic) at room temperature.  相似文献   

20.
High temperature power series valid for general spin and including second-neighbour interactions are given for the physical susceptibility of the three cubic lattices and for the staggered susceptibility of some antiferromagnetic orderings of the body-centred and face-centred lattices. The critical ordering temperatures corresponding to these series are discussed and compared with the results of molecular field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号