首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Presented here is a general theory for the three-dimensional nonlinear dynamics of elastic anisotropic initially straight beams undergoing moderate displacements and rotations. The theory fully accounts for geometric nonlinearities (large rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvature and strain-displacement expressions that contain the von Karman strains as a special case. Extensionality is included in the formulation, and transverse shear deformations are accounted for by using a third-order theory. Six third-order nonlinear partial-differential equations are derived for describing one extension, two bending, one torsion, and two shearing vibrations of composite beams. They show that laminated beams display linear elastic and nonlinear geometric couplings among all motions. The theory contains, as special cases, the Euler-Bernoulli theory, Timoshenko's beam theory, the third-order shear theory, and the von Karman type nonlinear theory.  相似文献   

2.
A general nonlinear theory for the dynamics of elastic anisotropic circular cylindrical shells undergoing small strains and moderate-rotation vibrations is presented. The theory fully accounts for extensionality and geometric nonlinearities by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvatures and strain-displacement expressions that contain the von Karman strains as a special case. Moreover, the linear part of the theory contains, as special cases, most of the classical linear theories when appropriate stress resultants and couples are defined. Parabolic distributions of the transverse shear strains are accounted for by using a third-order theory and hence shear correction factors are not required. Five third-order nonlinear partial differential equations describing the extension, bending, and shear vibrations of shells are obtained using the principle of virtual work and an asymptotic analysis. These equations show that laminated shells display linear elastic and nonlinear geometric couplings among all motions.  相似文献   

3.
A general geometrically exact nonlinear theory for the dynamics of laminated plates and shells under-going large-rotation and small-strain vibrations in three-dimensional space is presented. The theory fully accounts for geometric nonlinearities by using the new concepts of local displacements and local engineering stress and strain measures, a new interpretation and manipulation of the virtual local rotations, an exact coordinate transformation, and the extended Hamilton principle. Moreover, the model accounts for shear coupling effects, continuity of interlaminar shear stresses, free shear-stress conditions on the bonding surfaces, and extensionality. Because the only differences among different plates and shells are the initial curvatures of the coordinates used in the modeling and all possible initial curvatures are included in the formulation, the theory is valid for any plate or shell geometry and contains most of the existing nonlinear and shear-deformable plate and shell theories as special cases. Five fully nonlinear partial-differential equations and corresponding boundary and corner conditions are obtained, which describe the extension-extension-bending-shear-shear vibrations of general laminated two-dimensional structures and display linear elastic and nonlinear geometric coupling among all motions. Moreover, the energy and Newtonian formulations are completely correlated in the theory.  相似文献   

4.
In this paper, we propose a variation of the use of Murakami’s zig-zag theory for the analysis of laminated plates. The new theory accounts for through-the-thickness deformation, by considering a quadratic evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by the Carrera’s Unified Formulation, and further interpolated by collocation with radial basis functions. This paper considers the analysis of static deformations, free vibrations and buckling loads on laminated composite plates.  相似文献   

5.
Based on the Reddy ‘s theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature ( DQ ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert ( DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated. Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant.  相似文献   

6.
IntroductionAxiallycompressedstresseswilloccurinaconstrainedelasticbeamsubjectedtoatemperaturerising .Ifthemagnitudeofthecompressedstressesexceedacertainlimit,thermalbucklingoftheheatedbeam ,whichisoutofitsinitialconfiguration ,willtakeplace .So ,investigationsonthermalbucklingofrodsandbeamsareverynecessaryandimportantforthedesignofstructuresworkinginhightemperatureenvironmentsandofsomethermalsensitiveelasticelements.Becausethermalelasticpost_bucklingofbeamsandrodsareinducedbythethermallyaxial…  相似文献   

7.
The creep buckling and post-buckling of the laminated piezoelectric viscoelastic functionally graded material (FGM) plates are studied in this research. Considering the transverse shear deformation and geometric nonlinearity, the Von Karman geometric relation of the laminated piezoelectric viscoelastic FGM plates with initial deflection is established. And then nonlinear creep governing equations of the laminated piezoelectric viscoelastic FGM plates subjected to an in-plane compressive load are derived on the basis of the elastic piezoelectric theory and Boltzmann superposition principle. Applying the finite difference method and the Newmark scheme, the whole problem is solved by the iterative method. In numerical examples, the effects of geometric nonlinearity, transverse shear deformation, the applied electric load, the volume fraction and the geometric parameters on the creep buckling and post-buckling of laminated piezoelectric viscoelastic FGM plates with initial deflection are investigated.  相似文献   

8.
In the present paper, an advanced geometrically nonlinear shell theory of doubly curved structural sandwich panels with transversely compressible core is presented. The model is based on the adoption of the Kirchhoff theory for the face sheets and a second/third order power series expansion for the core displacements. The theory accounts for dynamic effects as well as for initial geometric imperfections. In the v. Kármán sense, large displacement theory is employed with respect to the transverse direction while the displacement gradients with respect to the tangential directions are assumed to be small. The equations of motion are derived by means of Hamilton’s principle and hold valid for all types of elastic and elastic–plastic material models. The theory is illustrated by an analysis of the elastic buckling and postbuckling behavior of flat and curved sandwich panels using an extended Galerkin scheme. Owing to the assumed transverse flexibility of the core, both the global and the local (face wrinkling) instability modes can be addressed.  相似文献   

9.
The dynamic stability and self-excited posteritical whirling of rotating transversally loaded shaft made of a standard material with elastic and viscous nonlinearities are analyzed in this paper using the theory of bifurcations as a mathematical tool. Partial differential equations of motion are derived under assumption that von Karman's nonlinearity is absent but geometric curvature nonlinearity is included. Galerkin's first-mode discretization procedure is then applied and the equations of motion are transformed to two third-order nonlinear equations that are analyzed using the theory of bifurcation. Condition for nontrivial equilibrium stability is determined and a bifurcating periodic solution of the second-order approximation is derived. The effects of dimensionless stress relaxation time and cubic elastic and viscous nonlinearities as well as the role of the transverse load are studied in the exemplary numerical calculations. A strongly stabilizing influence of the relaxation time is found that may eliminate self-excited vibration at all. Transition from super- to subcritical bifurcation is observed as a result of interaction between system nonlinearities and the transverse load.  相似文献   

10.
In the static and dynamic analysis of composite laminates, a theory for the laminated plates is presented in this paper. Because the deflection Wb which is caused by the classical bending deformation and the deflection W5 which is caused by the shear deformation are divided from the total deflection W in the theory, this makes it easy to solve the governing equations. In addition, this theory is convenient for the discussion and analysis of the effects of transverse shear deformations on bendings, vibrations and stabilities of laminated plates.  相似文献   

11.
In this paper, an efficient and simple refined theory is presented for nonlinear bending analysis of functionally graded sandwich plates. The theory presented is variationally consistent, does not require the shear correction factor, and gives rise to transverse shear stress variations such that the transverse shear stresses vary parabolically across the plate thickness, satisfying shear-stress-free surface conditions. The energy concept along with the present theory and the first- and third-order shear deformation theories is used to predict the large deflection and the stress distribution across the thickness of functionally graded sandwich plates.  相似文献   

12.
Nonlinear stability analysis of pre-stressed elastic bodies   总被引:4,自引:0,他引:4  
This article is concerned with the nonlinear analysis of the stability of thick elastic bodies subjected to finite elastic deformations. The analysis is based on the theory of small elastic deformations superimposed on a finite elastic deformation. Attention is drawn to methods developed in the stability analysis of fluids and of thin shells and plates which are readily applicable to the present circumstances. The state of development of the nonlinear stability analysis of thick elastic bodies is summarized in order to provide a basis for subsequent studies, and some new results relating to the stability of an elastic plate subjected to a pre-stress associated either with uniaxial thrust or with simple shear in the presence of all-round pressure are discussed. Near-critical modes in the neighbourhood of so-called critical configurations are considered to depend on, for example, a slow time variable, and nonlinear evolution equations for the mode amplitudes are derived both in the case of a monochromatic mode and for a resonant triad of modes. The crucial role of the ‘nonlinear coefficient’ in such an equation in the analysis of stability, imperfection sensitivity and localization is highlighted. An efficient (virtual work) method for the determination of this coefficient is described together with an alternative method based on the calculation of the total energy of a monochromatic near-critical mode. The influence of the boundary conditions and of the form of the pre-stress is examined and explicit calculation of the nonlinear coefficient is provided for the two representative pre-stress conditions mentioned in the above paragraph. It is shown, in particular, that a resonant triad of modes has an effect similar to that generated by the presence of a geometrical imperfection. The Appendices gather together for reference certain expressions which are used in the body of the article. These include expressions, not given previously in the literature, for the components of the tensor of third-order instantaneous elastic moduli in terms of the principal stretches of the deformation in respect of a general form of incompressible isotropic elastic strain-energy function. Received November 9, 1998  相似文献   

13.
This paper presents the analysis on the nonlinear dynamics of a deploying orthotropic composite laminated cantilever rectangular plate subjected to the aerodynamic pressures and the in-plane harmonic excitation. The third-order nonlinear piston theory is employed to model the transverse air pressures. Based on Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the nonlinear governing equations of motion are derived for the deploying composite laminated cantilever rectangular plate. The Galerkin method is utilized to discretize the partial differential governing equations to a two-degree-of-freedom nonlinear system. The two-degree-of-freedom nonlinear system is numerically studied to analyze the stability and nonlinear vibrations of the deploying composite laminated cantilever rectangular plate with the change of the realistic parameters. The influences of different parameters on the stability of the deploying composite laminated cantilever rectangular plate are analyzed. The numerical results show that the deploying velocity and damping coefficient have great effects on the amplitudes of the nonlinear vibrations, which may lead to the jumping phenomenon of the amplitudes for first-order and second-order modes. The increase of the damping coefficient can suppress the increase of the amplitudes of the nonlinear vibration.  相似文献   

14.
In the analysis of the bifurcation of thin orthotropic plates, the nonlinear terms associated with the third-order elastic constants are included in the stress-strain relation and large strain theory is used for the prebifurcation state. It is illustrated in an example that the second-order theory may affect considerably the buckling load (and mode).  相似文献   

15.
The transverse vibrations of a flexible connecting rod in an otherwise rigid slider-crank mechanism are considered. An analytical approach using the method of multiple scales is adopted and particular emphasis is placed on nonlinear effects which arise from finite deformations. Several nonlinear resonances and instabilities are investigated, and the influences of important system parameters on these resonances are examined in detail.  相似文献   

16.
In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.  相似文献   

17.
We consider the von Kármán nonlinearity and the Casimir force to develop reduced-order models for prestressed clamped rectangular and circular electrostatically actuated microplates. Reduced-order models are derived by taking flexural vibration mode shapes as basis functions for the transverse displacement. The in-plane displacement vector is decomposed as the sum of displacements for irrotational and isochoric waves in a two-dimensional medium. Each of these two displacement vector fields satisfies an eigenvalue problem analogous to that of transverse vibrations of a linear elastic membrane. Basis functions for the transverse and the in-plane displacements are related by using the nonlinear equation governing the plate in-plane motion. The reduced-order model is derived from the equation yielding the transverse deflection of a point. For static deformations of a plate, the pull-in parameters are found by using the displacement iteration pull-in extraction method. Reduced-order models are also used to study linear vibrations about a predeformed configuration. It is found that 9 basis functions for a rectangular plate give a converged solution, while 3 basis functions give pull-in parameters with an error of at most 4%. For a circular plate, 3 basis functions give a converged solution while the pull-in parameters computed with 2 basis functions have an error of at most 3%. The value of the Casimir force at the onset of pull-in instability is used to compute device size that can be safely fabricated.  相似文献   

18.
A recently developed coupled third-order zigzag theory for the statics of piezoelectric hybrid cross-ply plates is extended to dynamics. The theory combines a third-order zigzag approximation for the in-plane displacements and a sub-layerwise linear approximation for the electric potential, considering all components of the electric field. The nonuniform variation of the transverse displacement due to the piezoelectric field is accounted for. The conditions for the absence of shear traction at the top and bottom surfaces and continuity of transverse shear stresses in the presence of electromechanical loading are satisfied exactly, thereby reducing the number of displacement variables to five, which is the same as in a first- or third-order equivalent single-layer theory. The governing equations of motion are derived from the extended Hamilton's principle. The theory is assessed by comparing the Navier solutions for the free and forced harmonic vibration response of simply supported plates with the exact three-dimensional piezoelasticity solutions. Comparisons for hybrid test, composite and sandwich plates establish that the present theory is quite accurate for the dynamic response of moderately thick plates.  相似文献   

19.
In this paper, a method for the dynamic analysis of geometrically nonlinear elastic robot manipulators is presented. Robot arm elasticity is introduced using a finite element method which allows for the gross arm rotations. A shape function which accounts for the combined effects of rotary inertia and shear deformation is employed to describe the arm deformation relative to a selected component reference. Geometric elastic nonlinearities are introduced into the formulation by retaining the quadratic terms in the strain-displacement relationships. This has lead to a new stiffness matrix that depends on the rotary inertia and shear deformation and which has to be iteratively updated during the dynamic simulation. Mechanical joints are introduced into the formulation using a set of nonlinear algebraic constraint equations. A set of independent coordinates is identified over each subinterval and is employed to define the system state equations. In order to exemplify the analysis, a two-armed robot manipulator is solved. In this example, the effect of introducing geometric elastic nonlinearities and inertia nonlinearities on the robot arm kinematics, deformations, joint reaction forces and end-effector trajectory are investigated.  相似文献   

20.
The behaviour of thin rectangular plates when subjected to distributed transverse loading that produces plastic deformations is analysed in a relatively simple manner. The contour lines approach is used in conjunction with Ilyushin's theory for small plastic deformation. The governing nonlinear differential equations are solved using an iterative technique together with quadratic extrapolation scheme for linearisation and finite difference method for spatial discretisation. Some comparisons are made with previously obtained results as available in the literature. All details are explained by graphs. Numerical results show the accuracy and efficiency of this new approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号