首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical properties (absorption [mu(a)], transport scattering [mu('s)] and effective attenuation [mu(eff)] coefficients) of normal canine prostate were measured in vivo using interstitial isotropic detectors. Measurements were made at 732 nm before, during and after motexafin lutetium (MLu)-mediated photodynamic therapy (PDT). They were derived by applying the diffusion theory to the in vivo peak fluence rates measured at several distances (3, 6, 9, 12 and 15 mm) from the central axis of a 2.5 cm cylindrical diffusing fiber (CDF). Mu(a) and mu('s) varied between 0.03-0.58 and 1.0-20 cm(-1), respectively. Mu(a) was proportional to the concentration of MLu.Mu(eff) varied between 0.33 and 4.9 cm(-1) (mean 1.3 +/- 1.1 cm(-1)), corresponding to an optical penetration depth (8 = 1/(mu(eff)) of 0.5-3 cm (mean 1.3 +/- 0.8 cm). The mean light fluence rate at 0.5 cm from the CDF was 126 +/- 48 mW/cm2 (N = 22) when the total power from the fiber was 375 mW (150 mW/cm). This study showed significant inter- and intraprostatic differences in the optical properties, suggesting that a real-time dosimetry measurement and feedback system for monitoring light fluences during treatment should be advocated for future PDT studies. However, no significant changes were observed before, during and after PDT within a single treatment site.  相似文献   

2.
It is desirable to quantify the distribution of the light fluence rate, the optical properties, the drug concentration, and the tissue oxygenation for photodynamic therapy (PDT) of prostate cancer. We have developed an integrated system to determine these quantities before and after PDT treatment using motorized probes. The optical properties (absorption (micro(a)), transport scattering (micro(s'), and effective attenuation (micro(eff)) coefficients) of cancerous human prostate were measured in-vivo using interstitial isotropic detectors. Measurements were made at 732 nm before and after motexafin lutetium (MLu) mediated PDT at different locations along each catheter. The light fluence rate distribution was also measured along the catheters during PDT. Diffuse absorption spectroscopy measurement using a white light source allows extrapolation of the distribution of oxygen saturation StO2, total blood volume ([Hb]t), and MLu concentration. The distribution of drug concentration was also studied using fluorescence from a single optical fiber, and was found to be in good agreement with the values determined by absorption spectroscopy. This study shows significant inter- and intra-prostatic variations in the tissue optical properties and MLu drug distribution, suggesting that a real-time dosimetry measurement and feedback system for monitoring these values during treatment should be considered in future PDT studies.  相似文献   

3.
The in vivo fluorescence emission from human prostates was measured before and after motexafin lutetium (MLu)-mediated photodynamic therapy (PDT). A single side-firing optical fiber was used for both the delivery of 465 nm light-emitting diode excitation light and the collection of emitted fluorescence. It was placed interstitially within the prostate via a closed transparent plastic catheter. Fitting of the collected fluorescence emission spectra using the known fluorescence spectrum of 1 mg/kg MLu in an intralipid phantom yields a quantitative measure of the local MLu concentration. We found that an additional correction factor is needed to account for the reduction of the MLu fluorescence intensity measured in vivo due to strong optical absorption in the prostate. We have adopted an empirical correction formula given by C = (3.1 cm(-1)/micro's) exp (microeff x 0.97 cm), which ranges from approximately 3 to 16, with a mean of 9.3 +/-4.8. Using a computer-controlled step motor to move the probe incrementally along parallel tracks within the prostate we can determine one-dimensional profiles of the MLu concentration. The absolute MLu concentration and the shape of its distribution are confirmed by ex vivo assay and by diffuse absorption measurements, respectively. We find significant heterogeneity in photosensitizer concentration within and among five patients. These variations occur over large enough spatial scales compared with the sampling volume of the fluorescence emission that mapping the distribution in three dimensions is possible.  相似文献   

4.
Photodynamic therapy (PDT) uses light to activate a photosensitizer to achieve localized tumor control. In this study, PDT mediated by a second-generation photosensitizer, palladium-bacteriopheophorbide WST09 (Tookad) was investigated as an alternative therapy for prostate cancer. Normal canine prostate was used as the animal model. PDT was performed by irradiating the surgically exposed prostate superficially or interstitially at 763 nm to different total fluences (100 or 200 J/cm2; 50, 100 or 200 J/cm) at 5 or 15 min after intravenous administration of the drug (2 mg/kg). Areas on the bladder and colon were also irradiated. The local light fluence rate and temperature were monitored by interstitial probes in the prostate. All animals recovered well, without urethral complications. During the 1 week to 3 month post-treatment period, the prostates were harvested for histopathological examination. The PDT-induced lesions showed uniform hemorrhagic necrosis and atrophy, were well delineated from the adjacent normal tissue and increased linearly in diameter with the logarithm of the delivered light fluence. A maximum PDT-induced lesion size of over 3 cm diameter could be achieved with a single interstitial treatment. There was no damage to the bladder or rectum caused by scattered light from the prostate. The bladder and rectum were also directly irradiated with PDT. At 80 J/cm2, a full-depth necrosis was observed but resulted in no perforation. At 40 J/cm2, PDT produced minimal damage to the bladder or rectum. On the basis of optical dosimetry, we have estimated that 20 J/cm2 is the fluence required to produce prostatic necrosis. Thus, the normal structure adjacent to the prostate can be safely preserved with careful dosimetry. At therapeutic PDT levels, there was no structural or functional urethral damage even when the urethra was within the treated region. Hence, Tookad-PDT appears to be a promising candidate for prostate ablation in patients with recurrent, or possibly even primary, prostate cancer.  相似文献   

5.
Abstract— The depth of treatment in photodynamic therapy (PDT) of tumors varies with the wavelength of light activating the photosensitizer. New generation photosensitizers that are excited at longer wavelengths have the potential for increasing treatment depths. Tin ethyl etiopurpurin (SnET2), a promising second-generation photosensitizer is maximally activated at 665 nm, which may be significantly more penetrating than 633 nm light currently used with porphyrins in PDT. The penetration of 665 nm and 633 nm wavelength red light in the prostate gland was compared in 11 patients undergoing prostatic biopsies for suspected prostatic cancer. Interstitial optical fibers determined the light attenuation within the prostate gland. Of the 11 patients, 7 had dual wavelength and 4 had single wavelength studies. The mean attenuation coefficients, μeff, for 665 nm and 633 nm wavelength light were 0.32 ± 0.05 mm-1 and 0.39 ± 0.05 mm-1, respectively, showing a statistically significant difference (P = 0.0003). This represented a 22% increase in the mean penetration depth and at 10 mm from the delivery fiber there was 1.8 times as much 665 nm light fluence than 633 nm. The mean μeff at 665 nm for benign and malignant prostate tissue were similar ( P = 0.42), however, there was significant interpatient variation (μeff ranging from 0.24 to 0.42 mm-1) reflecting biological differences of therapeutic importance. The enhanced light fluence and penetration depth with 665 nm light should allow significantly larger volumes of prostatic tissue to be treated with SnET2-mediated PDT.  相似文献   

6.
Fluorescence-guided surgery (FGS) is routinely utilized in clinical centers around the world, whereas the combination of FGS and photodynamic therapy (PDT) has yet to reach clinical implementation and remains an active area of translational investigations. Two significant challenges to the clinical translation of PDT for brain cancer are as follows: (1) Limited light penetration depth in brain tissues and (2) Poor selectivity and delivery of the appropriate photosensitizers. To address these shortcomings, we developed nanoliposomal protoporphyrin IX (Nal-PpIX) and nanoliposomal benzoporphyrin derivative (Nal-BPD) and then evaluated their photodynamic effects as a function of depth in tissue and light fluence using rat brains. Although red light penetration depth (defined as the depth at which the incident optical energy drops to 1/e, ~37%) is typically a few millimeters in tissues, we demonstrated that the remaining optical energy could induce PDT effects up to 2 cm within brain tissues. Photobleaching and singlet oxygen yield studies between Nal-BPD and Nal-PpIX suggest that deep-tissue PDT (>1 cm) is more effective when using Nal-BPD. These findings indicate that Nal-BPD-PDT is more likely to generate cytotoxic effects deep within the brain and allow for the treatment of brain invading tumor cells centimeters away from the main, resectable tumor mass.  相似文献   

7.
Photodynamic therapy (PDT) requires oxygen to cause cellular and vascular tumor damage. Tissue oxygen concentration, in turn, is influenced by blood flow and blood oxygenation. Real-time clinical measurement of these hemodynamic quantities, however, is rare. This paper reports the development and application of a probe, combining diffuse reflectance spectroscopy (DRS) for measurement of tumor blood oxygenation and diffuse correlation spectroscopy (DCS) for measurement of tumor blood flow. The instrument was adapted for clinical use during interstitial prostate PDT. Three patients with locally recurrent prostate cancer received 2 mg/ kg motexafin lutetium (MLu) 3 h before illumination and a total light dose of 100 J/cm(2) at 150 mW/cm. Prostrate blood oxygen saturation (StO2) decreased only slightly (approximately 3%) after treatment. On the other hand, prostate blood flow and total hemoglobin concentration over the course of PDT decreased by 50% and 15%, respectively, suggesting MLu-mediated PDT has an anti-vascular effect. While it is certainly impossible to draw definite conclusions from measurements of only three patients, the observed differences in tumor blood flow and blood oxygenation responses during PDT can, in principle, be used to choose among tissue oxygen consumption models and therefore emphasize the potential clinical value for simultaneous monitoring of both parameters.  相似文献   

8.
A fractionated illumination scheme in which a cumulative fluence of 100 J cm(-2) is delivered in two equal light fractions separated by a dark interval of 2 h has been shown to considerably increase the efficacy of 5-aminolevulinic acid (ALA)-photodynamic therapy (PDT). The efficacy of such a scheme is further increased if the fluence of the first light fraction is reduced to 5 J cm(-2). We have investigated the relationship between the PDT response and the kinetics of protoporphyrin IX (PpIX) fluorescence in the SKH1 HR hairless mouse for first fraction fluences below 5 J cm(-2) delivered 4 h after the application of ALA and 10 J cm(-2) delivered 2 h after the application of ALA. Illumination is performed using 514 nm at a fluence rate of 50 mW cm(-2). Reducing the fluence of the first fraction to 2.5 J cm(-2) does not result in significantly different visual skin damage. The PDT response, however, is significantly reduced if the fluence is lowered to 1 J cm(-2), but this illumination scheme (1 + 99 J cm(-2)) remains significantly more effective than a single illumination of 100 J cm(-2). A first light fraction of 10 J cm(-2) can be delivered 2 h earlier, 2 h after the application of ALA, without significant reduction in the PDT response compared with 5 + 95 J cm(-2) delivered 4 and 6 h after the application of ALA. The kinetics of PpIX fluorescence are consistent with those reported previously by us and do not explain the significant increase in PDT response with a two-fold illumination scheme. Histological sections of the illuminated volume showed a trend toward increasing extent and depth of necrosis for the two-fold illumination scheme in which the first light fraction is 5 J cm(-2), compared with a single illumination scheme.  相似文献   

9.
Topical photodynamic therapy at low fluence rates--theory and practice   总被引:7,自引:0,他引:7  
Photodynamic Therapy (PDT), with topically applied 5-aminolaevulinic acid as the photosensitiser, is an effective treatment for various malignant and pre-malignant skin conditions. Several studies have shown the importance of fluence rate as well as fluence in the efficacy of PDT. We propose a measure of PDT efficacy, Photodynamic Damage Dose (PDD), which uses the product of instantaneous fluence rates, photosensitiser concentrations and oxygen concentrations in its calculation. We derive a qualitative numerical model of PDT and verify it by demonstrating an inverse fluence rate effect, increased efficacy of fractionated PDT, PDT induced hypoxia, and the dependence of photobleaching on fluence rate under certain circumstances. We recommend that fluence, fluence rate and any fractionation regime used should be detailed when reporting a trial as altering any of these has significant effects on PDT efficacy. The model predicts that low fluence rate irradiations should be as effective as high fluence rate irradiations if carried out over the same length of time. To test this we build a light emitting diode-based lamp (fluence rate of 7 mW cm(-2) at 635 nm) and used it to treat 32 superficial basal cell carcinomas on 22 patients (30 min treatment time, fluence 12.6 J cm(-2)). The complete response rate at one year was 84%, which is comparable to that achieved using higher fluence rate sources for similar treatment times. We conclude that this robust, inexpensive light source is effective for topical PDT.  相似文献   

10.
This preclinical study examines light fluence, photodynamic therapy (PDT) dose and “apparent reacted singlet oxygen,” [1O2]rx, to predict local control rate (LCR) for Photofrin‐mediated PDT of radiation‐induced fibrosarcoma (RIF) tumors. Mice bearing RIF tumors were treated with in‐air fluences (50–250 J cm?2) and in‐air fluence rates (50–150 mW cm?2) at Photofrin dosages of 5 and 15 mg kg?1 and a drug‐light interval of 24 h using a 630‐nm, 1‐cm‐diameter collimated laser. A macroscopic model was used to calculate [1O2]rx and PDT dose based on in vivo explicit dosimetry of the drug concentration, light fluence and tissue optical properties. PDT dose and [1O2]rx were defined as a temporal integral of drug concentration and fluence rate, and singlet oxygen concentration consumed divided by the singlet oxygen lifetime, respectively. LCR was stratified for different dose metrics for 74 mice (66 + 8 control). Complete tumor control at 14 days was observed for [1O2]rx ≥ 1.1 mm or PDT dose ≥1200 μm J cm?2 but cannot be predicted with fluence alone. LCR increases with increasing [1O2]rx and PDT dose but is not well correlated with fluence. Comparing dosimetric quantities, [1O2]rx outperformed both PDT dose and fluence in predicting tumor response and correlating with LCR.  相似文献   

11.
The effects of combined photodynamic therapy (PDT) and ionizing radiation are studied in a human glioma spheroid model. The degree of interaction between the two modalities depends in a complex manner on factors such as PDT irradiation fluence, fluence rate and dose of ionizing radiation. It is shown that gamma radiation and PDT interact in a synergistic manner only if both light fluence and gamma radiation dose exceed approximately 25 J cm(-2) and 8 Gy, respectively. Synergistic interactions are observed only for the lower fluence rate (25 mW cm(-2)) investigated. The degree of interaction appears to be independent of both sequence and the PDT or ionizing radiation time intervals investigated (1 and 24 h). Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays show that low-fluence rate PDT is very efficient at inducing apoptotic cell death, whereas neither high-fluence rate PDT nor ionizing radiation produces significant apoptosis. Although the mechanisms remain to be elucidated, the data imply that the observed synergism is likely not due to gamma-induced cell cycle arrest or to PDT-induced inhibition of DNA repair.  相似文献   

12.
Abstract— The aim of this study was to compare red (652 nm) and green (514 nm) light for photodynamic therapy (PDT) of the peritoneal cavity with emphasis on light distribution and toxicity. Red-light PDT was limited by intestinal toxicity and it was hypothesized that less penetrating green light would allow higher light doses to be used in the peritoneal cavity. Female non-tumor-bearing rats were photosensitized with mTHPC (meta-tetrahydroxyphenylchlorin, Foscan®) intravenously or intraperitoneally and the peritoneum was illuminated using a minimally invasive technique. For both red and green light, the time of illumination was varied to give the required dose. Light fluence rate was measured in situ at multiple sites within the abdominal cavity. The toxicity experiments were carried out with a total of 160 J incident red or 640 J incident green light and a drug dose of 0.15 mg/kg Foscan® For red light a mean fluence rate of 55.2 38.5 mW cm 2 was measured, with a peak fluence rate of 128 mW cm 2 on the intestines. For green light the mean and peak fluence rates were 8.2 9.0 (i.e. including zero fluence rate measurements) and 28 mW cm 2, respectively. Intestines were most vulnerable to red light illumination. The intravenous injection route resulted in increased toxicity for red light, but for green light there were no major differences between intravenous and intraperitoneal routes. The 4 h interval between drug and illumination resulted in very little toxicity for both wavelengths. We conclude that for intraperitoneal PDT green light allows higher light doses than red light, but the light distribution over the peritoneum is much less favorable and may not be suitable for whole peritoneal illumination using a minimal-access technique.  相似文献   

13.
PURPOSE: To determine the potential long term (three or six months) effectiveness of photodynamic therapy (PDT) in reducing intimal hyperplasia in swine. METHODS: Intimal hyperplasia in the abdominal aortae of swine was created by a combination of fat-supplemented diet and balloon catheter injury prior to PDT. Swine were randomly allocated into one of three groups which received either: (i) both drug and light (PDT), (ii) drug only, or (iii) light only. Twenty-four hours following administration of the photosensitizer PHOTOFRIN (porfimer sodium) at 2.5 mg/kg, two distinct 1 cm spots on the posterior wall of the abdominal aorta were illuminated by an argon pumped dye laser tuned to 630 nm for an energy fluence of 120 J/cm2. After three or six months, swine were sacrificed, perfusion fixed, and had their aortae removed for light and electron microscopy. RESULTS: Intimal hyperplasia reduction following PDT persisted for the three or six months follow up period. Experimental vessels receiving PDT showed a 26.0+/-4.5% ( n = 2, ie. four spots) and 30.8+/-5.4% ( n = 1, ie. two spots) smaller percent intimal area after three or six months of recovery, respectively. Control groups receiving either light or drug only showed less than a 6% difference in percent intimal area. Medial and adventitial layers were unaffected in all groups. Electron microscopy demonstrated that the endothelium or endothelial-like cells had regenerated in both the posterior and adjacent areas of the abdominal aortae with no clear difference between them. CONCLUSIONS: These findings suggest that PDT may be beneficial in reducing intimal hyperplasia for up to three or six months in swine.  相似文献   

14.
Photodynamic therapy of solid organs requires sufficient PDT dose throughout the target tissue while minimizing the dose to proximal normal structures. This requires treatment planning for position and power of the multiple delivery channels, complemented by on-line monitoring during treatment of light delivery, drug concentration and oxygen levels. We describe our experience in implementing this approach in Phase I/II clinical trials of the Pd-bacteriophephorbide photosensitizer TOOKAD (WST09)-mediated PDT of recurrent prostate cancer following radiation failure. We present several techniques for delivery and monitoring of photodynamic therapy, including beam splitters for light delivery to multiple delivery fibers, multi-channel light dosimetry devices for monitoring the fluence rate in the prostate and surrounding organs, methods of measuring the tissue optical properties in situ, and optical spectroscopy for monitoring drug pharmacokinetics of TOOKAD in whole blood samples and in situ in the prostate. Since TOOKAD is a vascular-targeted agent, the design and implementation of the techniques are different than for cellular-targeted agents. Further development of these delivery and monitoring techniques will permit full on-line monitoring of the treatment that will enable real-time, patient-specific and optimized delivery of PDT.  相似文献   

15.
The effects of aminolevulinic acid (ALA)-based photodynamic therapy (PDT) on tumor blood flow are controversial. This study examines the effects of ALA and Photofrin-based PDT on blood flow of Colon-26 tumors implanted in mice as well as the effects of ALA-based PDT on blood flow of human colorectal carcinomas and a carcinoid tumor in situ. Tumors are implanted in both flanks of mice. One tumor of each animal serves as a control. Blood flow is measured using a laser Doppler method. Tumor blood flow in mice not receiving a photosensitizer but treated with three different light fluences (50, 100 and 150 J/cm2) does not differ significantly from blood flow in the untreated tumor in the opposite flank. PDT after ALA administration using the three different light fluences does not significantly affect blood flow. In contrast, PDT after Photofrin administration causes a significant decrease in tumor blood flow with each light fluence, but this change is not as dramatic as reported in other studies. In contrast to mice, six patients who receive ALA prior to surgery all show a decrease in blood flow (mean = 51.8%, p < 0.001) after PDT using 100 J/cm2. Comparison with other published results suggests that it is likely that flow measurement by the laser Doppler method underestimates the effects of PDT on tumor blood flow due to the depth of laser penetration. Nevertheless, the present observations on blood flow suggest that the effects of ALA-based PDT on adenocarcinomas of the colon and rectum as well as an intra-abdominal carcinoid tumor in humans are more pronounced than would be predicated by some animal studies.  相似文献   

16.
Wavelength effects in photodynamic therapy (PDT) with hypericin (HY) were examined in a C26 colon carcinoma model both in vitro and in vivo. Irradiation of HY-sensitized cells in vitro with either 550 or 590 nm caused the loss of cell viability in a drug- and light-dose-dependent manner. The calculated ratio of HY-based PDT (HY-PDT) efficiencies at these two wavelengths was found to correlate with the numerical ratio of absorbed photons at each wavelength. In vivo irradiation of C26-derived tumors, 6 h after intraperitoneal administration of HY (5 mg/kg), caused extensive vascular damage and tumor necrosis. The depth of tumor necrosis (d) was more pronounced at 590 than at 550 nm and increased when the light dose was raised from 60 to 120 J/cm2. The maximal depths of tumor necrosis (at 120 J/cm2) were 7.5+/-1.5 mm at 550 nm and 9.9+/-0.8 mm at 590 nm. Both values are rather high in view of the limited penetration of green-yellow light into the tissue. Moreover, the depth ratio, d590/d550 = 1.3 (P < 0.001), is smaller than expected considering the 2.2-fold lower HY absorbance and the 1.7-fold lower tissue penetration of radiation at 550 than at 590 nm. This finding indicates that in vivo the depth at which HY-PDT elicits tumor necrosis is not only determined by photophysical considerations (light penetration, number of absorbed photons) but is also influenced significantly by other mechanisms such as vascular effects. Therefore, despite the relatively short-wavelength peaks of absorption, our observations suggest that HY is an effective photodynamic agent that can be useful in the treatment of tumors with depths in the range of 1 cm.  相似文献   

17.
Hypericin is a natural photosensitizer considered for the new generation of photodynamic therapy (PDT) drugs. The aim of this study was to evaluate the in vitro fungicidal effect of hypericin PDT on various Candida spp., assessing its photocytotoxicity to keratinocytes (HaCaT) and dermal fibroblasts (hNDF) to determine possible side effects. A 3 log fungicidal effect was observed at 0.5 McFarland for two Candida albicans strains, Candida parapsilosis and Candida krusei with hypericin concentrations of 0.625, 1.25, 2.5 and 40 μm, respectively, at a fluence of 18 J cm(-2) (LED lamp emitting at 602 ± 10 nm). To obtain a 6 log reduction, significantly higher hypericin concentrations and light doses were needed (C. albicans 5 μM, C. parapsilosis 320 μM and C. krusei 320 μM; light dose 37 J cm(-2)). Keratinocytes and fibroblasts can be preserved by keeping the hypericin concentration below 1 μm and the light dose below 37 J cm(-2). C. albicans appears to be suitable for treatment with hypericin PDT without significant damage to cutaneous cells.  相似文献   

18.
The understanding of light distribution within the target organ is essential in ensuring efficacy and safety in photodynamic therapy (PDT). A computer simulator of light distribution in prostatic tissue was employed for optimizing dosimetry for PDT in localized prostatic cancer. The program was based on empirically determined light distributions and optical constants and an assumed Ruence rate differential from fiber source to necrosis periphery. The diffusion theory approximation to the Boltzmann transport equation was the applicable formulation relevant to prostatic tissue, which has a high albedo with forward-scattering characteristics. Solving this equation of diffusive transfer for the appropriate fiber geometry yielded the energy fluence distributions for cleaved fiber and cylindrical diffuser light delivery. These distributions, confirmed by our measurements, show a l/r and l/r dependency (r = distance from light source) of the fluence ø(r) for the cleaved fiber and diffuser, respectively. This manifests itself by the tighter spacing of energy fluence isodoses in the case of the cleaved fiber. It was predicted that for a typical PDT regime a single interstitially placed cleaved fiber would treat 0.05–0.72 cm3, Four parallel fibers improve the uniformity of light distribution and treatment volume, and an interfiber separation of 12 mm would be necessary to provide optimal overlap of PDT necrosis, treating 0.26–3.6 cm3. The cylindrical diffuser, however, could treat larger volumes, and it was predicted that four 3 cm long diffusers at an optimal separation of 25 mm would treat 25–88 cm3 of prostatic tissue.  相似文献   

19.
Photodynamic therapy (PDT) relies on three main ingredients, oxygen, light and photoactivating compounds, although the PDT response is definitively contingent on the site and level of reactive oxygen species (ROS) generation. This study describes the development of a novel, fluorescent-based actinometer microsphere system as a means of discerning spatially resolved dosimetry of total fluence and ROS production. Providing a high resolution, localized, in situ measurement of fluence and ROS generation is critical for developing in vivo PDT protocols. Alginate-poly-L-lysine-alginate microspheres were produced using ionotropic gelation of sodium alginate droplets, ranging from 80 to 200 microm in diameter, incorporating two dyes, ADS680WS (ADS) and Rhodophyta-phycoerythrin (RPE), attached to the spheres' inside and outside layers, respectively. To test the responsivity and dynamic range of RPE for ROS detection, the production of ROS was initiated either chemically using increasing concentrations of potassium perchromate or photochemically using aluminum tetrasulphonated phthalocyanine. The generation of singlet oxygen was confirmed by phosphorescence at 1270 nm. The resulting photodegradation and decrease in fluorescence of RPE was found to correlate with increased perchromate or PDT treatment fluence, respectively. This effect was independent of pH (6.5-8) and could be inhibited using sodium azide. RPE was not susceptible to photobleaching with light alone (670 nm; 150 Jcm(-2)). ADS, which absorbs light between 600 and 750 nm, showed a direct correlation between radiant exposure (670 nm; 0-100 Jcm(-2)) and diminished fluorescence. Photobleaching was independent of irradiance (10-40 mW cm(-2)). We propose that actinometer microspheres may provide a means for obtaining high spatial resolution information regarding delivered PDT dose within model systems during investigational PDT development and dosimetric information for clinical extracorporeal PDT as in the case of ex vivo bone marrow purging.  相似文献   

20.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号