首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Except for the recoverable strain induced by phase transformation, NiTi alloys are very ductile even in the martensite phase. The purpose of the present paper is to study the influence of permanent deformation, which results from plastic deformation of martensite, on the mechanical behaviour of pseudoelastic NiTi alloys. Based on phenomenological theory of martensitic transformation and crystal plasticity, a new three dimensional micromechanical model is proposed by coupling both the slip and twinning deformation mechanisms. The present model is implemented as User MATerial subroutine (UMAT) into ABAQUS/Standard to study the influences of plastic deformation on the stress and strain fields, and on the evolution of martensite transformation. Results show that with the increasing of plastic deformation the residual strain increases and the phase transformation stress–strain curves from the martensite to austenite become steeper and less obvious. Both characteristics, stabilisation of martensite and impedance of the reverse transformation, due to plastic deformation are captured.  相似文献   

2.
崔世堂  唐志平 《实验力学》2013,28(2):193-198
采用阴影云纹和应变片方法对伪弹性TiNi合金圆板在固支条件下的准静态力学行为进行了实验研究,得到了载荷位移曲线、全场离面位移和局部应变等数据.载荷位移曲线呈现非线性、滞回耗能和无残余变形的特性,表明试样已经发生马氏体相变.应变测量显示,相变局限于加载中心较小区域,相变区内,环向应变大于径向应变,且拉伸侧应变大于压缩侧的应变.有限元模拟揭示出相变区内两侧表层的相变范围、相变铰区和马氏体相含量的不对称分布规律.  相似文献   

3.
采用添加造孔剂的方法制备了四种不同孔隙率PZT95/5铁电陶瓷,对其进行电场极化,随后开展了准静态单轴压缩实验,讨论了畴变、相变以及孔隙率对极化PZT95/5铁电陶瓷的力学响应与放电特性的影响. 研究结果表明:(1)多孔极化PZT95/5铁电陶瓷非线性力学响应行为主要归因于畴变和相变的共同作用,与内部孔洞变形和坍塌基本无关;(2) 在准静态单轴压缩下极化PZT95/5铁电陶瓷的去极化机制是畴变和相变的共同作用;(3) 孔隙率对极化PZT95/5铁电陶瓷的弹性模量、压缩强度有明显的影响,而对断裂应变的影响较小;(4)极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而线性衰减,但相变开始的临界体积应变却不依赖孔隙率;(5)极化PZT95/5铁电陶瓷电荷饱和释放量随着孔隙率呈线性减小,但孔隙率对电荷释放速率基本没有影响。  相似文献   

4.
A model of deformation of shape memory alloys (SMA) under nonmonotone loading is proposed. The model takes into account the fact that there is no strain hardening in the process of accumulation of the first phase transformation strains and describes both the usual hardening and the cross-hardening observed in martensite inelasticity experiments. Several examples illustrate the process of solving the model one-dimensional deformation problem with a given law of variation of the stress and the phase composition parameter and the problem on the direct transformation that occurs when cooling an SMA rod subjected to a constant bending moment.  相似文献   

5.
Energy dissipated in a highly compressed 4340 steel cylinder is determined as a function of load time history. Analyzed in particular are the different material damage modes. Highly localized deformation can result in phase transformation of the metal in addition to other forms of failure such as yielding and fracture. Under large deformation, material response depends not only on strain rate but also the degree of mechanical damage. These effects are assessed quantitatively by an energy balance approach and the results compare favorably with available experimental data. The energy transfer associated with the change in material microstructure due to phase transformation is calculated. This can be identified with localized deformation bands which have also been observed in explosively fragmented bodies.  相似文献   

6.
形状记忆合金相变塑性的统一本构理论   总被引:1,自引:0,他引:1  
本文根据单品相变时其宏观(长程)切应变(等效应变)与外加切应力(等效应力)问的幂函数关系假定,建立了形状记忆合金多晶体相变塑性的统一细观本构理论,它推广了现有细观本构理论的结果,消除了现有理论中存在的当外加偏应力趋于零时自由能函数的不连续性和宏观塑性变形的不连续性。这一本构理论将能统一地描述在不同温度和载荷下记忆合金所呈现的各种行为。  相似文献   

7.
Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechanical loading-unloading cycles without showing permanent deformation.This paper presents a stress-induced phenomenological constitutive equation for SMAs,which can be used to describe the superelastic hysteresis loops and phase transformation between Martensite and Austenite.The Martensite fraction of SMAs is assumed to be dependent on deviatoric stress tensor.Therefore,phase transformation of SMAs is volume preserving during the phase transformation.The model is implemented in large deformation finite element code and cast in the updated Lagrangian scheme.In order to use the Cauchy stress and the linear strain in constitutive laws,a frame indifferent stress objective rate has to be used.In this paper,the Jaumann stress rate is used.Results of the numerical experiments conducted in this study show that the superelastic hysteresis loops arising with the phase transformation can be effectively captured.  相似文献   

8.
Recent experimental evidence points to limitations in characterizing the critical strain in ductile fracture solely on the basis of stress triaxiality. A second measure of stress state, such as the Lode parameter, is required to discriminate between axisymmetric and shear-dominated stress states. This is brought into the sharpest relief by the fact that many structural metals have a fracture strain in shear, at zero stress triaxiality, that can be well below fracture strains under axisymmetric stressing at significantly higher triaxiality. Moreover, recent theoretical studies of void growth reveal that triaxiality alone is insufficient to characterize important growth and coalescence features. As currently formulated, the Gurson Model of metal plasticity predicts no damage change with strain under zero mean stress, except when voids are nucleated. Consequently, the model excludes shear softening due to void distortion and inter-void linking. As it stands, the model effectively excludes the possibility of shear localization and fracture under conditions of low triaxiality if void nucleation is not invoked. In this paper, an extension of the Gurson model is proposed that incorporates damage growth under low triaxiality straining for shear-dominated states. The extension retains the isotropy of the original Gurson Model by making use of the third invariant of stress to distinguish shear dominated states. The importance of the extension is illustrated by a study of shear localization over the complete range of applied stress states, clarifying recently reported experimental trends. The extension opens the possibility for computational fracture approaches based on the Gurson Model to be extended to shear-dominated failures such as projectile penetration and shear-off phenomena under impulsive loadings.  相似文献   

9.
张会杰  唐志平  李丹 《实验力学》2009,24(6):525-531
对不同几何尺寸和边界约束条件的TiNi合金圆柱壳进行了准静态径向压缩实验研究,利用数字摄像和图像处理技术得到了不同位置柱壳的变形特征和应变分布,结果表明,在柱壳表面受压处先出现相变铰,随着名义应变的增大,相变铰将发展成相变铰区;在柱壳表面受拉处出现相变铰,但此处材料先进入马氏体相.当径厚比和边界约束不变时,随着名义应变的增大,柱壳的耗能率和比能不断增加.当名义应变不变时,柱壳的耗能率和比能随边界约束个数的增多而增加,吸能效果更好,随径厚比的增加而减小,吸能效率下降.  相似文献   

10.
The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.  相似文献   

11.
采用添加造孔剂的方法制备了4种不同孔隙率的未极化PZT95/5铁电陶瓷。采用基于超高速相机与数字图像相关性方法的试样全场应变测量技术以及分离式霍普金森压杆(SHPB)技术,对多孔未极化PZT95/5铁电陶瓷进行高应变率单轴压缩实验研究。全场应变测量结果显示:轴向应变仅在试样中部分布较均匀,将该区域的平均应变作为应力-应变关系中的试样应变测量值较为合理,而由SHPB原理计算的试样应变值明显偏大,需要摒弃或修正传统的SHPB数据处理方法。通过波形整形技术实现了恒应变率加载,弱化了径向惯性效应的影响,揭示出多孔未极化PZT95/5铁电陶瓷的压缩强度具有显著的应变率效应。通过分析试样轴向应变和径向应变随着加载应力的变化,阐明多孔未极化PZT95/5铁电陶瓷的非线性变形行为的物理机制是畴变和相变共同作用,并发现畴变临界应力和相变临界应力都随着应变率升高而增大。保持加载应变率不变,讨论了孔隙率对多孔未极化PZT95/5铁电陶瓷动态力学行为的影响,发现随着孔隙率的升高,动态压缩强度呈非线性衰减,而畴变临界应力和相变临界应力则基本呈线性衰减。  相似文献   

12.
Liu  Yonggui  Hui  Mengmeng  Shen  Lingyan 《Meccanica》2021,56(8):2039-2051

Thermo-mechanical coupling is an intrinsic property of first order martensitic transformation. In this paper, we study the temperature evolution during phase transition at a wider strain rates from quasi static to impact loading to reveal the thermodynamic nature of the strain rate effect of phase transition materials. Based on the laws of thermodynamics and the principle of maximum dissipated energy, a thermal-mechanically coupled model was proposed. The model shows that, in the quasi static case, the temperature profile grades around the moving phase boundary, while for the dynamic case, thermal response of the specimen can be reached homogeneously due to random nucleation. The predicted results of the model are in good agreement with the experimental results, suggesting that the interaction between the self-heating effect and the temperature dependence of phase transition behavior plays a leading role in the process of the transformation deformation mechanism associated with the loading rate.

  相似文献   

13.
This paper uses a new constitutive model developed recently by the authors to analyse the multi-phase transformations in mono-crystalline silicon when subjected to nano-indentation. The finite element method is employed to the integration of the stress–strain relationship. A very good agreement is reached with the experimental measurements, with an accurate prediction of the observed pop-in and pop-out and detailed phase transformation events in loading and unloading. It was found that due to the change of microstructures, the material in the deformation zone could experience a local unloading during indentation loading or undergo a local loading during indentation unloading. The phase transformation events during indentation are closely related to the variation of both the deviatoric and hydrostatic stress components.  相似文献   

14.
The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of ~980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite–martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress–strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite–martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.  相似文献   

15.
16.
Uniaxial tension tests were performed under a constant strain rate and various environmental temperatures from 77 to 373 K to identify the concrete form of the constitutive equation for TRIP steels. To elucidate the dependence of the martensitic transformation on the nonuniform deformation and to validate the proposed constitutive equation, the volume fraction of the martensite phase is predicted and measured using computational simulation and experimental procedures, respectively, for the uniaxial tension of bars with a ringed notch. The good correspondence between the local volume fraction of the martensite phase around the notch, obtained by both methods, verifies the validity of the proposed constitutive equation for the nonuniform deformation behavior. Subsequently, the computational simulations were performed to elucidate the deformation behavior of ringed-notched bars under compression and that of smooth/ringed-notched bars under cyclic loading.  相似文献   

17.
18.
研究冲击波作用下金属微观组织变化对于理解柱壳结构在高应变率下的变形及破坏极为重要。实验通过对20钢金属柱壳在内部爆炸载荷作用下的爆炸回收碎片截面进行微观分析,探讨冲击波作用下材料的组织演化、相变特征,同时使用有限元方法对柱壳膨胀断裂过程中的热力学特征进行分析。研究发现:20钢柱壳近内表面满足α→ε相变热力学条件的有限深度区域内,α晶粒内可见明显的平行滑移线分布特征;电子背散射衍射揭示了平行滑移线区域内组织碎化,且存在{112}<111>和{332}<113>两种孪晶,同时平行滑移线的碎化组织区域中存在密排六方晶格(HCP)的ε相结构,而试样原始组织及爆炸后除试样壁厚内部(0~3.0 mm)区域外均未见ε相结构残留。分析认为:冲击过程中发生了α→ε相变;相变引发的材料性能改变将可能影响断裂破坏过程;考虑冲击波作用下金属材料动态相变对结构变形与破坏的影响,对这类柱壳变形及破坏的精密物理模拟具有重要意义,有必要开展进一步研究。  相似文献   

19.
Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena include deformation instability with the formation of a helical domain, domain topology transition from helix to cylinder, domain-front branching and loading-path dependence of domain patterns. In this paper, we model the polycrystal as an elastic continuum with nonconvex strain energy and adopt the non-local strain gradient energy to account for the energy of the diffusive domain front. We simulate the equilibrium domain patterns and their evolution in the tubes under tensile loading by a non-local Finite Element Method (FEM). It is revealed that the observed loading-path dependence and topology transition of do- main patterns are due to the thermodynamic metastability of the tube system. The computation also shows that the tube-wall thickness has a significant effect on the domain patterns: with fixed material properties and interfacial energy density, a large tube-wall thickness leads to a long and slim helical domain and a severe branching of the cylindrical-domain front.  相似文献   

20.
超弹性形状记忆合金管单向拉伸试验的数值模拟   总被引:1,自引:0,他引:1  
胡振东  孙庆平 《力学季刊》2005,26(3):389-392
NiTi形状记忆合金具有很强的超弹性行为,这种超弹性行为是由于材料在应力作用下发生可逆的马氏体相变所引起。最近Sun和Lee^[4]在NiTi形状记忆合金管单向拉伸试验中观测到,应力诱导马氏体相变具有螺旋带状的形貌特征,本文对此作了数值模拟研究。采用包含应变软化效应的三线性本构关系,建立了NiTi形状记忆合金管的三维有限元模型。通过迭代计算,成功地再现了试验中所观察到的螺旋状相变带从形成到长大的全过程。数值计算结果表明,产生这一独特现象的力学机制,在于NiTi形状记忆合金管在拉伸状态下出现的局部变形失稳极其传播。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号