首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
We introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven. We analyze experimental parameters, detection schemes, and various imperfections.  相似文献   

2.
We study fermionic atoms of three different internal quantum states (colors) in an optical lattice, which are interacting through attractive on site interactions, U<0. Using a variational calculation for equal color densities and small couplings, |U|<|UC|, a color superfluid state emerges with a tendency to domain formation. For |U|>|UC|, triplets of atoms with different colors form singlet fermions (trions). These phases are the analogies of the color superconducting and baryonic phases in QCD. In ultracold fermions, this transition is found to be of second order. Our results demonstrate that quantum simulations with ultracold gases may shed light on outstanding problems in quantum field theory.  相似文献   

3.
We have studied mixtures of fermionic (40)K and bosonic (87)Rb quantum gases in a three-dimensional optical lattice. We observe that an increasing admixture of the fermionic species diminishes the phase coherence of the bosonic atoms as measured by studying both the visibility of the matter wave interference pattern and the coherence length of the bosons. Moreover, we find that the attractive interactions between bosons and fermions lead to an increase of the boson density in the lattice which we measure by studying three-body recombination in the lattice. In our data, we do not observe three-body loss of the fermionic atoms. An analysis of the thermodynamics of a noninteracting Bose-Fermi mixture in the lattice suggests a mechanism for sympathetic cooling of the fermions in the lattice.  相似文献   

4.
A two component model of negative U centers coupled with the Fermi sea of itinerant fermions is discussed in connection with high-temperature superconductivity of cuprates, and superfluidity of atomic fermions. We examine the phase transition and the condensed state of this boson-fermion model (BFM) beyond the ordinary mean-field approximation in two and three dimensions. No pairing of fermions and no condensation are found in two-dimensions for any symmetry of the order parameter. The expansion in the strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg-Landau-Gorkov equation and a zero upper critical field in any-dimensional BFM, which indicates that previous mean-field discussions of the model are flawed. Normal and anomalous Greens functions are obtained diagrammatically and analytically in the condensed state of a simplest version of 3D BFM. A pairing of bosons analogous to the Cooper pairing of fermions is found. There are three coupled condensates in the model, described by the off-diagonal single-particle boson, pair-fermion and pair-boson fields. These results negate the common wisdom that the boson-fermion model is adequately described by the BCS theory at weak coupling.Received: 26 February 2004, Published online: 18 June 2004PACS: 74.20.-z Theories and models of superconducting state - 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 74.20.Rp Pairing symmetries (other than s-wave) - 74.25.Dw Superconductivity phase diagrams  相似文献   

5.
A mixture of ultracold bosons and fermions placed in an optical lattice constitutes a novel kind of quantum gas, and leads to phenomena, which so far has been discussed neither in atomic physics, nor in condensed matter physics. We discuss the phase diagram at low temperatures, and in the limit of strong atom-atom interactions, and predict the existence of quantum phases that involve pairing of fermions with one or more bosons, or, respectively, bosonic holes. The resulting composite fermions may form, depending on the system parameters, a normal Fermi liquid, a density wave, a superfluid liquid, or an insulator with fermionic domains. We discuss the feasibility for observing such phases in current experiments.  相似文献   

6.
T.K. Ng 《哲学杂志》2015,95(26):2918-2947
We provide an overview of some modern developments in the theory of phases and phase transitions in classical and quantum systems. We show the link between non-ergodicity and fidelity in quantum systems and discuss topological phase transitions. We show that the quantum phase transitions are associated with qualitative changes in some properties of the quantum wavefunctions across the phase transition. We discuss the topological phase transition associated with p-wave superconductor since it is a topic of wide interest because of the possible observation of Majorana fermions.  相似文献   

7.
The recent experimental realization of dipolar Fermi gases near or below quantum degeneracy provides an opportunity to engineer Hubbard-like models with long-range interactions. Motivated by these experiments, we chart out the theoretical phase diagram of interacting dipolar fermions on the square lattice at zero temperature and half filling. We show that, in addition to p-wave superfluid and charge density wave order, two new and exotic types of bond order emerge generically in dipolar fermion systems. These phases feature homogeneous density but periodic modulations of the kinetic hopping energy between nearest or next-nearest neighbors. Similar, but manifestly different, phases of two-dimensional correlated electrons have previously only been hypothesized and termed "density waves of nonzero angular momentum." Our results suggest that these phases can be constructed flexibly with dipolar fermions, using currently available experimental techniques.  相似文献   

8.
Four-component massive and massless Dirac fermions in the presence of long range Coulomb interaction and chemical potential disorder exhibit striking fermionic quantum criticality. For an odd number of flavors of Dirac fermions, the sign of the Dirac mass distinguishes the topological and the trivial band insulator phases, and the gapless semimetallic phase corresponds to the quantum critical point that separates the two. Up to a critical strength of disorder, the semimetallic phase remains stable, and the universality class of the direct phase transition between two insulating phases is unchanged. Beyond the critical strength of disorder the semimetallic phase undergoes a phase transition into a disorder controlled diffusive metallic phase, and there is no longer a direct phase transition between the two types of insulating phases.  相似文献   

9.
We investigate bosonic atoms or molecules interacting via dipolar interactions in a planar array of one-dimensional tubes. We consider the situation in which the dipoles are oriented perpendicular to the tubes by an external field. We find various quantum phases reaching from a "sliding Luttinger liquid" phase to a two-dimensional charge density wave ordered phase. Two different kinds of charge density wave order occur: a stripe phase in which the bosons in different tubes are aligned and a checkerboard phase. We further point out how to distinguish the occurring phases experimentally.  相似文献   

10.
The model of fermions in a magnetic field interacting via a purely three-body repulsive interaction has attracted interest because it produces, in the limit of short range interaction, the Pfaffian state with non-Abelian excitations. We show that this is part of a rich phase diagram containing a host of fractional quantum Hall states, a composite fermion Fermi sea, and a pairing transition. This is entirely unexpected, because the appearance of composite fermions and fractional quantum Hall effect is ordinarily thought to be a result of strong two-body repulsion. Recent breakthroughs in ultracold atoms have facilitated the realization of such a system, where this physics can be tested.  相似文献   

11.
Fidelity and fidelity susceptibility are introduced to investigate the topological superconductors with end Majorana fermions. A general formalism is established to calculate the fidelity and fidelity susceptibility by solving Bogoliubov–de Gennes equations. Both clean and disordered systems are studied within this formalism, and the results show that the fidelity susceptibility serves as a valid indicator for the topological quantum phase transition which signals the appearance of Majorana fermions. Our study provides a useful tool to investigate the topological quantum phase transition in superconductors, which is helpful to find topological phases in various systems.  相似文献   

12.
We use Hanbury-Brown-Twiss interferometry (HBTI) to study various quantum phases of hard core bosons (HCBs) and ideal fermions confined in a one-dimensional quasi-periodic (QP) potential. For HCBs, the QP potential induces a cascade of Mott-like band-insulator phases in the extended regime, in addition to the Mott insulator, Bose glass, and superfluid phases. At critical filling factors, the appearance of these insulating phases is heralded by a peak to dip transition in the interferogram, which reflects the fermionic aspect of HCBs. On the other hand, ideal fermions in the extended phase display various complexities of incommensurate structures such as devil’s staircases and Arnold tongues. In the localized phase, the HCB and the fermion correlations are identical except for the sign of the peaks. Finally, we demonstrate that HBTI provides an effective method to distinguish Mott and glassy phases.  相似文献   

13.
Using a functional renormalization group approach we study the zero temperature phase diagram of two-dimensional Bose-Fermi mixtures of ultracold atoms in optical lattices, in the limit when the velocity of bosonic condensate fluctuations is much larger than the Fermi velocity. For spin-1/2 fermions we obtain a phase diagram, which shows a competition of pairing phases of various orbital symmetry (s, p, and d) and antiferromagnetic order. We determine the value of the gaps of various phases close to half filling, and identify subdominant orders as well as short-range fluctuations from the renormalization group flow. For spinless fermions we find that p-wave pairing dominates the phase diagram.  相似文献   

14.
In this paper we propose an exactly solvable model of a topological insulator defined on a spin- \(\tfrac{1}{2}\) square decorated lattice. Itinerant fermions defined in the framework of the Haldane model interact via the Kitaev interaction with spin- \(\tfrac{1}{2}\) Kitaev sublattice. The presented model, whose ground state is a non-trivial topological phase, is solved exactly. We have found out that various phase transitions without gap closing at the topological phase transition point outline the separate states with different topological numbers. We provide a detailed analysis of the model’s ground-state phase diagram and demonstrate how quantum phase transitions between topological states arise. We have found that the states with both the same and different topological numbers are all separated by the quantum phase transition without gap closing. The transition between topological phases is accompanied by a rearrangement of the spin subsystem’s spectrum from band to flat-band states.  相似文献   

15.
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.  相似文献   

16.
We calculate the phase diagrams at high temperature of SU(N) gauge theories with massive fermions by minimizing the one-loop effective potential. Considering fermions in the adjoint (Adj) representation at various N we observe a variety of phases when Nf2 Majorana flavours and periodic boundary conditions are applied to fermions. Also the confined phase is perturbatively accessible. For N=3, we add Fundamental (F) representation fermions with antiperiodic boundary conditions to adjoint QCD to show how the Z(3)-symmetry breaks in the confined phase.  相似文献   

17.
周晓凡  陈刚  贾锁堂 《中国物理 B》2022,31(1):17102-017102
We propose a scheme to realize the SU(3)spin-orbit coupled three-component fermions in an one-dimensional optical lattice.The topological properties of the single-particle Hamiltonian are studied by calculating the Berry phase,winding number and edge state.We also investigate the effects of the interaction on the ground-state topology of the system,and characterize the interaction-induced topological phase transitions,using a state-of-the-art density-matrix renormalization-group numerical method.Finally,we show the typical features of the emerging quantum phases,and map out the many-body phase diagram between the interaction and the Zeeman field.Our results establish a way for exploring novel quantum physics induced by the SOC with SU(N)symmetry.  相似文献   

18.
The ground state phase diagram of the one-dimensional Bose-Fermi Hubbard model is studied in the canonical ensemble using a quantum Monte Carlo method. We focus on the case where both species have half filling in order to maximize the pairing correlations between the bosons and the fermions. In case of equal hopping we distinguish among phase separation, a Luttinger liquid phase, and a phase characterized by strong singlet pairing between the species. True long-range density waves exist with unequal hopping amplitudes.  相似文献   

19.
A phase transition into the condensed state of fermions hybridized with immobile bosons is examined beyond the ordinary mean-field approximation (MFA) in two and three dimensions. The hybridization interaction does not provide the Cooper pairing of fermions and the Bose condensation in two dimensions. In the three-dimensional boson–fermion model (BFM), an expansion in the strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg–Landau–Gor’kov equation. This indicates that previous mean-field discussions of the model are flawed in any dimension. In particular, the conventional (MFA) upper critical field is zero in any-dimensional BFM.  相似文献   

20.
周洋  郭健宏 《物理学报》2015,64(16):167302-167302
Majorana费米子是其自身的反粒子, 在拓扑量子计算中有着重要的应用. 利用粒子数表象下的量子主方程方法, 研究双量子点与Majorana费米子混合结构的电子输运特性, 特别是散粒噪声. 有无Majorana费米子耦合的电流与散粒噪声存在明显差别: 有Majorana费米子耦合时稳态电流差呈反对称, 噪声谱呈现相干振荡并且低频噪声显著增强. 量子点与Majorana费米子对称弱耦合时, 零频噪声由"峰"变为"谷", 并且"边谷"展宽逐渐减小; 当对称强耦合时, 零频噪声的谷深增加, "边谷"向高频端移动. 改变系统与电极的耦合强度时, 零频噪声由谷变成峰. 因此, 稳态电流结合散粒噪声可以探测双量子点结构中Majorana费米子是否存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号