首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
危卫  张力元  顾兆林 《物理学报》2015,64(16):168301-168301
工业过程中粉体颗粒不可避免地会相互摩擦碰撞而荷电. 荷电颗粒的存在可能会危害正常的工业生产过程, 也可能对工业过程起促进作用. 因此, 荷电粉体颗粒及其特性受到了广泛的关注, 但目前对粉体颗粒的荷电机理依然缺乏透彻的了解, 尤其是在气固两相流动中的粉体颗粒荷电现象. 事实上, 工业中存在的粉体颗粒的运动都受到流体的影响, 是典型的气固两相流系统, 流体对粉体颗粒的作用使粉体颗粒接触的荷电现象变得更为复杂, 因此从两相流动的观点来研究粉体颗粒荷电的物理本质就显得越来越重要. 本文介绍了工业过程中的几种不同类型的粉体颗粒荷电行为, 回顾了颗粒的荷电机理与描述颗粒荷电的数学模型. 对于工业过程中颗粒的荷电现象及颗粒在多相流体中的动力学行为, 介绍了研究颗粒受流体影响时荷电特性的数值模拟方法. 本文旨在对粉体颗粒的荷电机理、应用以及研究方法进行梳理与探讨, 为正确认识工业过程中粉体颗粒的荷电现象并加以控制利用提供理论借鉴.  相似文献   

2.
A critical challenge for experimental studies of triboelectric charging is to generate reproducible and unambiguous data that can be linked to theoretical concepts. We have developed a methodology to investigate the triboelectric charging of granular materials due solely to particle–particle interactions (i.e. no particle–wall interactions). The methodology is based on a particle flow apparatus that generates a fountain-like flow in which the particles contact only other particles, but no equipment surfaces. Non-contact methods of measuring charge and separating particles by charge are employed so that probe-particle charging does not occur.  相似文献   

3.
采用轨道受限运动方法研究了极区夏季中层顶区域的尘埃粒子电荷数与尘埃粒子半径。利用尘埃等离子体充电理论,建立了尘埃粒子充电方程模型,得到尘埃粒子充电时尘埃电荷数和半径的比值。然后结合ECT02实验数据,分析了发生极区中层夏季回波现象时极区中层顶区域尘埃粒子电荷数和半径的比值,并得到尘埃粒子的半径以及尘埃粒子所带电荷量。结果表明,极区中层顶区域的尘埃粒子平均所带电荷不到一个,它的半径约为20nm。  相似文献   

4.
采用轨道受限运动方法研究了极区夏季中层顶区域的尘埃粒子电荷数与尘埃粒子半径。利用尘埃等离子体充电理论,建立了尘埃粒子充电方程模型,得到尘埃粒子充电时尘埃电荷数和半径的比值。然后结合ECT02实验数据,分析了发生极区中层夏季回波现象时极区中层顶区域尘埃粒子电荷数和半径的比值,并得到尘埃粒子的半径以及尘埃粒子所带电荷量。结果表明,极区中层顶区域的尘埃粒子平均所带电荷不到一个,它的半径约为20nm。  相似文献   

5.
6.
曹猛  王芳  刘婧  张海波 《中国物理 B》2012,(12):487-493
<正>We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV.The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons.The dynamic spatial distribution of charges is obtained and validated by existing experimental data.Our simulations show that excess negative charges are concentrated near the edge of the electron range.However,the formed region of high charge density may extend to the surface and bottom of a kapton sample,due to the effects of the electric field on electron scattering and charge transport,respectively.Charge trapping is then demonstrated to significantly influence the charge motion.The charge distribution can be extended to the bottom as the trap density decreases.Charge accumulation is therefore balanced by the appearance and increase of leakage current.Accordingly,our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.  相似文献   

7.
曹猛  王芳  刘婧  张海波 《中国物理 B》2012,21(12):127901-127901
We present a novel numerical model and simulate preliminarily the charging process of polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of polymer irradiated by electrons in the complex space environment.  相似文献   

8.
《Journal of Electrostatics》2005,63(6-10):643-647
The aim of the present paper is to introduce a simple experimental technique for estimating the corona charging conditions of insulating granules that form a layer at the surface of the grounded electrode of roll-type electrostatic separators. The basic idea consists in measuring the potential at any point on the surface of this layer by means of an electrostatic probe. The capacity of the probe–layer system being constant, the measured potential is proportional to the charge. The results clearly show that the charges imparted to the particles in the corona discharge depend on their positions at the surface of the electrode and on the inter-electrode spacing. This observation could be of use, for instance, to particle charging simulations performed as a preliminary step of any feasibility study of new electrostatic separation applications.  相似文献   

9.
Injections of nonrelativistic electron beams from an infinite conductor have been simulated by using a two-dimensional electrostatic particle code to study the spacecraft charging potential. The simulations show that the conductor charging potential at the end of simulations does not vary with the beam density when the beam density exceeds four times the ambient density. The reflection coefficient, which determines a percentage of incident electrons reflected by the conductor, increases the charging potential. To charge the conductor to the beam energy, the reflection coefficient needs to be about 0.5. The results are applied to explain the spacecraft charging potential measured during the SEPAC (Space Experiments with Particle Accelerators) experiments from Spacelab 1  相似文献   

10.
A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.  相似文献   

11.
Particle dynamics simulations are carried out to study triboelectric charging in granular systems composed of a single insulating material. The simulations implement a model in which electrons trapped in localized high energy states can be transferred during collisions to low energy states in the other particle. It is shown that this effect alone can generate electrostatic charging in the system, and cause net electron transfer from larger particles to smaller particles. The magnitude of charging is small for systems of a single particle size but becomes much greater for a system with polydispersal particle sizes, due to the net electron transfer from larger to smaller particles. The negative charge of smaller particles, and positive charge of larger particles has been observed in field studies and laboratory experiments of granular systems.  相似文献   

12.
A CFD model was developed to describe the particle laden gas flow through an ESP, particle charging and collection. The corona discharge was modeled using the open source software OpenFOAM to solve the Poison and charge conservation equations, and results were entered using user-defined field functions in the commercial CFD software STAR-CCM+. The gas flow, EHD flow, particle charging and dynamics were modeled using STAR-CCM+. The developed CFD model allows for direct solution of the drift and diffusional flux of gas ions. The influence of the various ESP dimensions, operating parameters and ash properties on the collection efficiency are reported.  相似文献   

13.
Particle motion induced by electrical forces is the basis for important class of measuring instruments. Charging is important in aerosol size measurement. Unipolar charger is a crucial component in the aerosol particle sizing system by electrical mobility analysis. For an electrical mobility analyzer, the charging is aimed to impose a known net charge distribution on each aerosol size. The charger performance depends on the charging efficiency and stable operation. A well-designed unipolar charger should provide high charging efficiency and stability that can be accurately determined for any given operating conditions. This article presents and discusses progress on the development of existing unipolar aerosol chargers based on corona discharge technique. The operating principles as well as detailed physical characteristics of these chargers, including the corona-wire and corona-needle chargers, are described with extensive list of references.  相似文献   

14.
This work is focused on analysing effect of accumulated dust particles' charge on PV module performance. In the Dundee University's laboratory, dust particles have been created through epoxy powder and charged by using corona and tribo-electric charging methods by varying the charge levels of the accumulated dust particles. The PV module output has analysed for finding a relation between charge levels of the accumulated dust particles and its output voltage. Obtained experimental results have shown that charge level of accumulated dust particles on PV module's have significant impact on its output and dust particle accumulations are not associated with panel tilt angle.  相似文献   

15.
Electrostatic charge generation poses significant problems in some commercial gas–solid fluidized bed reactors such as those in gas-phase polyolefin production. Understanding the contributing factors to charge generation is important in determining the charge generation mechanisms, leading to the development of methods to reduce or prevent this phenomenon. This work focused on determining the effect of fluidization time on particle charging and the amount of particle adhesion on the fluidization column wall in both the bubbling and slugging flow regimes. The charging effect was investigated for particles in three regions of the fluidized bed: elutriated fines, bulk particles inside the bed, and particles adhered to the column wall. The particles size distribution, mass and charge were measured for all three regions. Fluidization was carried out with polyethylene resins from an industrial reactor; times of 15, 30, 60, 120, 180, and 360 min were evaluated. Increased fluidization time decreased the amount of particles mass collected in the bulk region and increased those adhered to the column wall during the velocities tested in the bubbling flow regime. Whereas the quantity of particles in each region was not affected by fluidization time for the velocities examined in the slugging flow regime. Bipolar charging was observed with relatively smaller particles becoming predominately positively charged and larger particles becoming predominately negatively charged. Each region of the bed affected the magnitude of net q/m, with elutriated fines having the largest magnitude, followed by those adhered to the column wall, and finally those in the bulk of the bed. Charge saturation was attained for fluidization times greater than 60 min for particles in the bulk and along the column wall for all gas velocities. However, extended fluidization times were required with the entrained fines in bubbling flow; whereas charge saturation of fines in slugging flow occurred shortly after the onset of fluidization. Mean particle diameter for each measurement region was not impacted by the fluidization time for any of the gas velocities tested. The bed hydrodynamics was found to definitely have an impact on the particle–wall fouling where the particle layer continued to develop on the inner column wall as fluidization time increased for those velocities in the bubbling regime while comparatively less impact on particle layer growth was observed in the slugging flow regime. In addition, the bubbling flow regime resulted in particle layers formed on the column wall to be longer and thinner whereas those formed in the slugging flow regime were shorter and thicker.  相似文献   

16.
Charge to mass ratio is a crucial parameter that governs the behavior of particle trajectories in a charged cloud of particles. The complex nature of the charging process limits our ability to accurately determine the charging level when particles of varying size are present. Using a numerical approach, it is possible, however, to take into account predefined values for this parameter. In this paper, the average charge to mass ratio and the distribution of the charge to mass ratio in the coating of a flat target were systematically varied to demonstrate their effect on the motion of the charged particles. The results show that the transfer efficiency increases as the average charge to mass ratio increases. It was found that the transfer efficiency is a weak function of the average particle size in the range tested and that it increases as the width of the size distribution increases.  相似文献   

17.
A Direct Simulation Monte Carlo (DSMC) technique is applied for describing the dynamics of aerosol charging. The method is based on the transformation of known combination coefficients into charging probabilities. Changes in the particle charge distribution are computed as a stochastic game, calculating the time-step after each event. The simulations are validated by comparison with analytical solutions for unipolar aerosol diffusion charging and aerosol photocharging. The advantage of the DSMC method lies in the uncomplicated simulation of multi-dimensional systems that would result in very elaborate population balances. The DSMC method is used for simulation of the photocharging of moderately concentrated bicomponent polydisperse aerosols. By means of this method, the influence of the particle parameters (size, material) on the dynamics of the charge distribution in different size and material fractions has been studied. It is shown that charge separation between size or material fractions can be achieved for aerosol components with dissimilar work functions, while the total aerosol charge is zero.  相似文献   

18.
Charging mechanisms of trapped, element-selectively excited free SiO2 nanoparticles by soft x rays are reported. The absolute charge state of the particles is measured and the electron emission probability is derived. Changes in electron emission processes as a function of photon energy and particle charge are obtained from the charging current. This allows us to distinguish contributions from primary photoelectrons, Auger electrons, and secondary electrons. Processes leading to no change in charge state after absorption of x-ray photons are identified. O 1s-excited SiO2 particles of low charge state indicate that the charging current follows the inner-shell absorption. In contrast, highly charged SiO2 nanoparticles are efficiently charged by resonant Auger processes, whereas direct photoemission and normal Auger processes do not contribute to changes in particle charge. These results are discussed in terms of an electrostatic model.  相似文献   

19.
Electrostatic charging of particles in gas-solid fluidized beds often results in operational complications in commercial processes. This paper provides a comprehensive review of the advances from the last decade in three key areas, namely the fundamental understanding of triboelectric charging, methods to measure particle charge, and experiments to elucidate particle charging processes in fluidized beds. This review underscores the need for better understanding the mechanisms of triboelectric charging in granular systems, effective online charge monitoring techniques, and experiments under industrially relevant conditions to better comprehend the problems in commercial reactors that can enable strategies to mitigate charging.  相似文献   

20.
A fictitious-domain based formulation for fully resolved simulations of arbitrary shaped, freely moving rigid particles in unsteady flows is presented. The entire fluid–particle domain is assumed to be an incompressible, but variable density, fluid. The numerical method is based on a finite-volume approach on a co-located, Cartesian grid together with a fractional step method for variable density, low-Mach number flows. The flow inside the fluid region is constrained to be divergence-free for an incompressible fluid, whereas the flow inside the particle domain is constrained to undergo rigid body motion. In this approach, the rigid body motion constraint is imposed by avoiding the explicit calculation of distributed Lagrange multipliers and is based upon the formulation developed by Patankar [N. Patankar, A formulation for fast computations of rigid particulate flows, Center for Turbulence Research Annual Research Briefs 2001 (2001) 185–196]. The rigidity constraint is imposed and the rigid body motion (translation and rotational velocity fields) is obtained directly in the context of a two-stage fractional step scheme. The numerical approach is applied to both imposed particle motion and fluid–particle interaction problems involving freely moving particles. Grid and time-step convergence studies are performed to evaluate the accuracy of the approach. Finally, simulation of rigid particles in a decaying isotropic turbulent flow is performed to study the feasibility of simulations of particle-laden turbulent flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号