首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the Mott transition in weakly coupled one-dimensional (1D) fermionic chains. Using a generalization of dynamical mean field theory, we show that the Mott gap is suppressed at some critical hopping t{ perpendicular}{c2}. The transition from the 1D insulator to a 2D metal proceeds through an intermediate phase where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that such pockets would look like "arcs" in photoemission experiments.  相似文献   

2.
The effects of both interactions and Zeeman magnetic field in disordered electronic systems are explored in the Hubbard model on a square lattice. We investigate the thermodynamic (density, magnetization, density of states) and transport (conductivity) properties using determinantal quantum Monte Carlo and inhomogeneous Hartree Fock techniques. We find that at half filling there is a novel metallic phase at intermediate disorder that is sandwiched between a Mott insulator and an Anderson insulator. The metallic phase is highly inhomogeneous and coexists with antiferromagnetic long-range order. At quarter filling also the combined effects of disorder and interactions produce a conducting state which can be destroyed by applying a Zeeman field, resulting in a magnetic field-driven transition. We discuss the implication of our results for experiments.  相似文献   

3.
We report a transport study of exfoliated few monolayer crystals of topological insulator Bi2Se3 in an electric field effect geometry. By doping the bulk crystals with Ca, we are able to fabricate devices with sufficiently low bulk carrier density to change the sign of the Hall density with the gate voltage V(g). We find that the temperature T and magnetic field dependent transport properties in the vicinity of this V(g) can be explained by a bulk channel with activation gap of approximately 50 meV and a relatively high-mobility metallic channel that dominates at low T. The conductance (approximately 2×7e2/h), weak antilocalization, and metallic resistance-temperature profile of the latter lead us to identify it with the protected surface state. The relative smallness of the observed gap implies limitations for electric field effect topological insulator devices at room temperature.  相似文献   

4.
We analyze the effects of the on-site Coulomb repulsion U on a band insulator using dynamical mean field theory (DMFT). We find the surprising result that the gap is suppressed to zero at a critical Uc1 and remains zero within a metallic phase. At a larger Uc2 there is a second transition from the metal to a Mott insulator, in which the gap increases with increasing U. These results are qualitatively different from Hartree-Fock theory which gives a monotonically decreasing but nonzero insulating gap for all finite U.  相似文献   

5.
Photoemission spectra of the paramagnetic insulating phase of (V0.972Cr0.028)2O3, taken in ultrahigh vacuum up to the unusually high temperature (T) of 800 K, reveal a property unique to the Mott-Hubbard (MH) insulator that has not been observed previously. With increasing T the MH gap is filled by spectral weight transfer, in qualitative agreement with high-T theoretical calculations combining dynamical mean field theory and band theory in the local density approximation.  相似文献   

6.
A metal-disordered and correlated barrier–metal heterostructure is studied at half-filling using unrestricted Hartree Fock method. The corresponding clean system has been shown to be an insulator for any finite on site correlation. Interestingly we find that introduction of explicit disorder induces an inhomogeneous, plane dependent, modulated spin and charge order. There is a metal–insulator transition at a critical value of disorder. The critical value corresponds to the point at which disorder kills the gap at half filling due to onsite correlation and completely destroys the plane dependent antiferromagnetic order. The wavefunctions are found to delocalize by increasing disorder, thus rendering the system metallic.  相似文献   

7.
王竞  EnricoArrigoni 《中国物理 B》2009,18(6):2475-2480
The one-electron spectral function of a frustrated Hubbard chain is computed by making use of the cluster perturbation theory. The spectral weight we found turns out to be strongly dependent on the frustrating next-nearest-neighbor hopping t'. A frustration induced pseudogap arises when the system evolves from a gapful Mott insulator to a gapless conductor for an intermediate value of the frustration parameter |t'|. Furthermore, the opening of a pseudogap in the density of states already in the metallic side leads to a continuous opening of the true gap in the insulator. For the hole-doped case, the pseudogap is pinned at the Fermi energy, while the Mott gap is shifted in energy with increasing Hubbard interaction U. The separation of the pseudogap and Mott gap in the hole-doped system demonstrates the validity of the existence of a pseudogap.  相似文献   

8.
We present the transport and capacitance measurements of 10 nm wide GaAs quantum wells with hole densities around the critical point of the 2D metal-insulator transition (critical density p(c) down to 0.8 × 10(10)/cm2, r(s) ~ 36). For metallic hole density p(c) < p < p(c) + 0.15 × 10(10)/cm2, a reentrant insulating phase (RIP) is observed between the ν = 1 quantum Hall state and the zero-field metallic state and it is attributed to the formation of pinned Wigner crystal. Through studying the evolution of the RIP versus 2D hole density, we show that the RIP is incompressible and continuously connected to the zero-field insulator, suggesting a similar origin for these two phases.  相似文献   

9.
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U > Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.  相似文献   

10.
We consider spin-1/2 fermions of mass m with interactions near the unitary limit. In an applied periodic potential of amplitude V and period a_{L}, and with a density of an even integer number of fermions per unit cell, there is a second-order quantum phase transition between superfluid and insulating ground states at a critical V=V_{c}. We compute the universal ratio V_{c}ma_{L};{2}/variant Planck's over 2pi;{2} at N=infinity in a model with Sp(2N) spin symmetry. The insulator interpolates between a band insulator of fermions and a Mott insulator of fermion pairs. We discuss implications for recent experiments.  相似文献   

11.
The phase diagram of FeSi(1-x)Ge(x), obtained from magnetic, thermal, and transport measurements on single crystals, shows a discontinuous transition from Kondo insulator to ferromagnetic metal with x at a critical concentration, x(c) approximately 0.25. The gap of the insulating phase strongly decreases with x. The specific heat gamma coefficient appears to track the density of states of a Kondo insulator. The phase diagram is consistent with an insulator-metal transition induced by a reduction of the hybridization with x in conjunction with disorder on the Si/Ge ligand site.  相似文献   

12.
The inclusion of the contribution of Jahn-Teller distortion of MnO(6) units, in addition to double-exchange, has been largely successful in explaining the magneto-transport behavior of manganites. However, our recent experiments on La(0.5)Ca(0.5)MnO(3) demonstrated the limitation of these factors in explaining the radical difference between the magneto-transport properties of bulk and nanocrystalline forms. While bulk La(0.5)Ca(0.5)MnO(3) exhibits insulator character (4-300 K) and an anti-ferromagnetic-ferromagnetic transition at 200 K, the nanocrystalline form stabilizes in a metallic ferromagnetic phase (4-300 K). This is counter-intuitive since large Jahn-Teller distortion, which promotes anti-ferromagnetism or insulator character, exists in the nanocrystals too (as indicated by x-ray diffraction results). In this work, we resolve this paradox by considering the role of structural disorder. Employing x-ray absorption spectroscopy, we establish that the disorder in inter-octahedral coupling is enhanced by 57% in the nanocrystals, as the octahedral units are randomly oriented with respect to each other. This orientational disorder promotes metallic ferromagnetism by destroying the stringent orbital ordering that is needed for anti-ferromagnetism and the co-operative nature of the orbital order.  相似文献   

13.
We study the effect of disorder on the superconductor-insulator transition in an inhomogeneous d-wave superconductor using the kernel polynomial method. As the Bogoliubov-de Gennes equations of the two-dimensional square lattice are solved self-consistently for the cases with more than 100000 unit cells, it is possible to observe the spatial fluctuations of the superconducting order parameters at the nanoscale. We find that strong spatial fluctuation of the superconducting order parameters can be introduced by disorder, and some superconducting specific order parameters are even enhanced. Moreover, we find that some isolated superconducting "islands" can survive the strong disorder, giving a boson insulator with some localized Cooper pairs. Our numerical calculations predict the existence of two sequential transitions with the increasing disorder strength: a d-wave to s-wave superconductor transition, and then an s-wave superconductor to insulator transition. The possibility of the appearance of a metallic phase between the superconducting and insulating phases is excluded by performing the lattice-size scaling of the generalized inverse participation ratio. In addition, we also discuss the effect of disorder on the optical conductivity of the d-wave superconductors.  相似文献   

14.
Liu Z  Liu CX  Wu YS  Duan WH  Liu F  Wu J 《Physical review letters》2011,107(13):136805
Recently, there have been intense efforts in searching for new topological insulator materials. Based on first-principles calculations, we find that all the ultrathin Bi (111) films are characterized by a nontrivial Z(2) number independent of the film thickness, without the odd-even oscillation of topological triviality as commonly perceived. The stable nontrivial Z(2) topology is retained by the concurrent band gap inversions at multiple time-reversal-invariant k points with the increasing film thickness and associated with the intermediate interbilayer coupling of the Bi film. Our calculations further indicate that the presence of metallic surface states in thick Bi (111) films can be effectively removed by surface adsorption.  相似文献   

15.
We inspect the fundamental difference between the correlated band insulators (BI) and the Mott insulators (MI) from the perspective of the dynamical pair excitations. To this end, we investigated the physics of the two-plane Hubbard model by employing the well-tested dynamical mean field theory (DMFT) together with the quantum Monte Carlo (QMC) method. At half-filling our results clearly indicate that while the spectral weight of the pair excitation becomes minimal at MI which corresponds to a diminishing of the double occupancy, the opposite occurs at BI. We then discuss the effect of doping and find that the correlated band insulator and the Mott insulator robust at low doping concentration and the metallic state emerges at larger doping. The pair spectral function demonstrates that the metallic state of doped MI is strongly different from that of doped BI and it is readily reflected in the lineshape of the spectra. We discuss the implication of our results in the context of the two-particle spectroscopy.  相似文献   

16.
We have systematically synthesized single-crystalline thin films of layered perovskites Sr2MO4 (M = Ti, V, Cr, Mn, and Co) which cannot be obtained in a form of bulk crystal apart from M = Mn. The two-dimensional electronic structure of these M4+ oxides, ranging from a correlated insulator to a ferromagnetic metal, has been investigated by using their optical conductivity spectra with polarizations E is perpendicular to c and E is parallel to c, which reveal systematic variation of the correlated charge gap, Mott-Hubbard gap, or charge-transfer gap. Temperature dependence of the gap-transition spectra is argued in the light of possible spin and/or orbital ordering.  相似文献   

17.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

18.
The effect of Cd doping on transport, magnetotransport, and magnetic properties has been investigated in the perovskite La1−xCdxMnO3 (0x0.5) systems. The ρ(T) curves exhibit a sharp metal insulator transition (Tp1), which is close to paramagnetic to ferromagnetic transition (Tc) obtained from MT curves for all samples. In addition, ρ(T) curves for Cd doped samples exhibit another broad transition (TP2) below Tp1. This transition becomes more prominent and the transition temperature (Tp2) shifts to lower temperature with increasing Cd content. Such double peak behavior in the ρ(T) curve is attributed to the phase separation between the ferromagnetic metallic phases and the ferromagnetic insulating phases induced by the electronic inhomogeneity in the samples.  相似文献   

19.
吴冰兰  宋俊涛  周娇娇  江华 《中国物理 B》2016,25(11):117311-117311
Disorder inevitably exists in realistic samples,manifesting itself in various exotic properties for the topological states.In this paper,we summarize and briefly review the work completed over the last few years,including our own,regarding recent developments in several topics about disorder effects in topological states.For weak disorder,the robustness of topological states is demonstrated,especially for both quantum spin Hall states with Z_2 = 1 and size induced nontrivial topological insulators with Z_2 = 0.For moderate disorder,by increasing the randomness of both the impurity distribution and the impurity induced potential,the topological insulator states can be created from normal metallic or insulating states.These phenomena and their mechanisms are summarized.For strong disorder,the disorder causes a metal-insulator transition.Due to their topological nature,the phase diagrams are much richer in topological state systems.Finally,the trends in these areas of disorder research are discussed.  相似文献   

20.
Atomically thin transition metal dichalcogenide films with distorted trigonal(1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investigation of its electronic structure are critical. Here we report the electronic structure of 1T'-MoTe_2 films grown by molecular beam epitaxy(MBE).Growth of the 1T'-MoTe_2 film depends critically on the substrate temperature, and successful growth of the film is indicated by streaky stripes in the reflection high energy electron diffraction(RHEED) and sharp diffraction spots in the low energy electron diffraction(LEED). Angle-resolved photoemission spectroscopy(ARPES) measurements reveal a metallic behavior in the as-grown film with an overlap between the conduction and valence bands. First principles calculation suggests that a suitable tensile strain along the a-axis direction is needed to induce a gap to make it an insulator. Our work not only reports the electronic structure of MBE grown 1T'-MoTe_2 films, but also provides insights for strain engineering to make it possible for quantum spin Hall effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号