首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
For a class of frustrated spin lattices including the Kagomé lattice we construct exact eigenstates consisting of several independent, localized one-magnon states and argue that they are ground states for high magnetic fields. If the maximal number of local magnons scales with the number of spins in the system, which is the case for the Kagomé lattice, the effect persists in the thermodynamic limit and gives rise to a macroscopic jump in the zero-temperature magnetization curve just below the saturation field. The effect decreases with increasing spin quantum number and vanishes in the classical limit. Thus it is a true macroscopic quantum effect.  相似文献   

2.
A class of the frustrated quantum s = ½ models with nearest and next nearest neighbor couplings is investigated. An exact wave function of the singlet ground state at the transition point from the ferromagnetic to the singlet state is presented. The recurrence technics of expectation value calculations is developed and the simple expressions for spin-correlation function at N → ∞ are obtained. A long range double-spiral ordering is demonstrated. We show that in one particular case the model reduces to the effective spin-1 model and the exact singlet ground state wave function is presented for this model. The behavior of the system in the vicinity of the transition point is investigated.  相似文献   

3.
4.
The resonating-valence-bond (RVB) theory for two-dimensional quantum antiferromagnets is shown to be the correct paradigm for large enough "quantum frustration." This scenario, proposed a long time ago but never confirmed by microscopic calculations, is strongly supported by a new type of variational wave function, which is extremely close to the exact ground state of the J(1)-J(2) Heisenberg model for 0.4 less than approximately J(2)/J(1) less than approximately 0.5. This wave function is proposed to represent the generic spin-half RVB ground state in spin liquids.  相似文献   

5.
We show that the existence of string order in a given quantum state is intimately related to the presence of a local symmetry by proving that both concepts are equivalent within the framework of finitely correlated states. Once this connection is established, we provide a complete characterization of local symmetries in these states. The results allow us to understand in a straightforward way many of the properties of string order parameters, like their robustness or fragility under perturbations and their typical disappearance beyond strictly one-dimensional lattices. We propose and discuss an alternative definition, ideally suited for detecting phase transitions, and generalizations to two and more spatial dimensions.  相似文献   

6.
The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.  相似文献   

7.
The spin-lattice coupling plays an important role in strongly frustrated magnets. In ZnCr2O4, an excellent realization of the Heisenberg antiferromagnet on the pyrochlore network, a lattice distortion relieves the geometrical frustration through a spin-Peierls-like phase transition at T(c)=12.5 K. Conversely, spin correlations strongly influence the elastic properties of a frustrated magnet. By using infrared spectroscopy and published data on magnetic specific heat, we demonstrate that the frequency of an optical phonon triplet in ZnCr2O4 tracks the nearest-neighbor spin correlations above T(c). The splitting of the phonon triplet below T(c) provides a way to measure the spin-Peierls order parameter.  相似文献   

8.
9.
By using the dual vortex method (DVM), we develop systematically a simple and effective scheme to use the vortex degree of freedoms on dual lattices to characterize the symmetry breaking patterns of the boson insulating states in the direct lattices. Then we apply our scheme to study quantum phases and phase transitions in an extended boson Hubbard model slightly away from 1/3 (2/3) filling on frustrated lattices such as triangular and Kagome lattice. In a triangular lattice at 1/3, we find a X-CDW, a stripe CDW phase which was found previously by a density operator formalism (DOF). Most importantly, we also find a new CDW-VB phase which has both local CDW and local VB orders, in sharp contrast to a bubble CDW phase found previously by the DOF. In the Kagome lattice at 1/3, we find a VBS phase and a 6-fold CDW phase. Most importantly, we also identify a CDW-VB phase which has both local CDW and local VB orders which was found in previous QMC simulations. We also study several other phases which are not found by the DVM. By analyzing carefully the saddle point structures of the dual gauge fields in the translational symmetry breaking sides and pushing the effective actions slightly away from the commensurate filling f=1/3f=1/3(2/3)(2/3), we classified all the possible types of supersolids and analyze their stability conditions. In a triangular lattice, there are X-CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. In a Kagome lattice, there are 6-fold CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. We show that independent of the types of the SS, the quantum phase transitions from solids to supersolids driven by a chemical potential are in the same universality class as that from a Mott insulator to a superfluid, therefore have exact exponents z=2z=2, ν=1/2ν=1/2, η=0η=0 (with logarithmic corrections). Excitation spectra of all these insulating phases and supersolid phases are also studied. Implications on QMC simulations with both nearest neighbor and next nearest neighbor interactions in both lattices are given. Some possible intrinsic problems of the DOF in identifying the insulating phases are also pointed out.  相似文献   

10.
We study the spin ordering of a quantum dot defined via magnetic barriers in an interacting quantum spin Hall edge. The spin‐resolved density–density correlation functions are computed. We show that strong electron interactions induce a ground state with a highly correlated spin pattern. The crossover from the liquid‐type correlations at weak interactions to the ground state spin texture found at strong interactions parallels the formation of a one‐dimensional Wigner molecule in an ordinary strongly interacting quantum dot.

  相似文献   


11.
A quantum mechanical picture is presented to describe the behavior of confined spinons in a variety of S =1/2 chains. The confinement is due to dimerization and frustration and it manifests itself as a nonlinear potential , centered at chain ends () or produced by modulation kinks (b > 1). The calculation extends to weak or zero frustration some previous ideas valid for spinons in strongly frustrated spin chains. The local magnetization patterns of the confined spinons are calculated. A (minimum) enhancement of the local moments of about 11/3 over a single S =1/2 is found. Estimates for excitation energies and binding lengths are obtained. Received: 8 May 1998 / Revised and Accepted: 12 August 1998  相似文献   

12.
13.
14.
15.
We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the “regrowth” tendency of QD with increasing T at Δ < 0, in contrast to the “growth” of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.  相似文献   

16.
We use the density matrix renormalization group method to investigate the role of longitudinal quantized phonons on the Peierls transition in the spin-Peierls model. For both the XY and Heisenberg spin-Peierls model we show that the staggered phonon order parameter scales as sqrt[lambda] (and the dimerized bond order scales as lambda) as lambda-->0 (where lambda is the electron-phonon interaction). This result is true for both linear and cyclic chains. Thus, we conclude that the Peierls transition occurs at lambda=0 in these models. Moreover, for the XY spin-Peierls model we show that the quantum predictions for the bond order follow the classical prediction as a function of inverse chain size for small lambda. We therefore conclude that the zero lambda phase transition is of the mean-field type.  相似文献   

17.
Using the density matrix renormalization group technique, the quantum phase transitions in a frustrated spin-1/2 ladder with ferromagnetic interchain exchanges are investigated. According to our results, the two-rung entanglement is capable of describing the quantum phase transitions. Furthermore, its first order derivative is shown to be more sensitive than order parameters for determining phase boundary. Therefore, the intermediate columnar dimerized phase region is determined definitely.  相似文献   

18.
Thomas E. Stone 《Physica A》2010,389(15):2911-2914
We introduce a network model for frustrated spin systems based on highly correlated spin fluctuations, to quantify and visualize their ordering. This model shows that networks of strongly correlated but non-contiguous spins exist at low temperatures on a triangular Ising lattice with competing nearest-neighbor interactions. This finding is consistent with chaotic renormalization-group trajectories previously reported for frustrated hierarchical lattices.  相似文献   

19.
We provide a self-consistent mean-field framework to study the effect of strong interactions in a quantum spin Hall insulator on the honeycomb lattice. We identify an exotic phase for large spin-orbit coupling and intermediate Hubbard interaction. This phase is gapped and does not break any symmetry. Instead, we find a fourfold topological degeneracy of the ground state on the torus and fractionalized excitations with semionic mutual braiding statistics. Moreover, we argue that it has gapless edge modes protected by time-reversal symmetry but a trivial Z(2) topological invariant. Finally, we discuss the experimental signatures of this exotic phase. Our work highlights the important theme that interesting phases arise in the regime of strong spin-orbit coupling and interactions.  相似文献   

20.
We show that interference experiments can be used to identify the spin-incoherent regime of strongly interacting one-dimensional conductors. Two qualitative signatures of spin incoherence are found: a strong magnetic field dependence of the interference contrast and an anomalous scaling of the interference contrast with the applied voltage, with a temperature and magnetic field dependent scaling exponent. The experiments distinguish the spin-incoherent from the spin-polarized regime, and so may be useful in deciding between alternative explanations proposed for the anomalous conductance quantization observed in quantum point contacts and quantum wires at low density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号