首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new class of leptogenesis bounds on the spontaneous symmetry breaking of global lepton number. These models have a generic feature of inducing new lepton number violating interactions, due to the presence of the Majorons. We analyzed the singlet Majoron model with right-handed neutrinos to find that the lepton number should be broken above 105 GeV to realize a successful leptogenesis because the annihilations of the right-handed neutrinos into the massless Majorons and into the standard model Higgs should go out of equilibrium before the sphaleron process is over. We then argue that this type of leptogenesis constraint should exist in the singlet–triplet Majoron models as well as in a class of R-parity violating supersymmetric Majoron models.  相似文献   

2.
We study the correlation between CP violation in neutrino oscillations and leptogenesis in the framework with two heavy Majorana neutrinos and three light neutrinos. Among three unremovable CP phases, a heavy Majorana phase contributes to leptogenesis. We show how the heavy Majorana phase contributes to Jarlskog determinant J as well as neutrinoless double beta decay by identifying a low energy CP-violating phase which signals the CP-violating phase for leptogenesis. For some specific cases of the Dirac mass term of neutrinos, a direct relation between lepton number asymmetry and J is obtained. We also study the effect coming from the phases which are not related to leptogenesis.  相似文献   

3.
T Hambye 《Pramana》2006,67(4):723-733
Through leptogenesis, baryogenesis could have the same origin as neutrino masses. We review the various ways of implementing the leptogenesis mechanism. Emphasis is put on the conditions which, in order that this mechanism works, need to be fulfilled by the neutrino masses as well as by the heavy state masses.  相似文献   

4.
《Nuclear Physics B》2004,692(3):303-345
We study the scenario of thermal leptogenesis in which the leptonic asymmetries are resonantly enhanced through the mixing of nearly degenerate heavy Majorana neutrinos that have mass differences comparable to their decay widths. Field-theoretic issues arising from the proper subtraction of real intermediate states from the lepton-number-violating scattering processes are addressed in connection with an earlier developed resummation approach to unstable particle mixing in decay amplitudes. The pertinent Boltzmann equations are numerically solved after the enhanced heavy-neutrino self-energy effects on scatterings and the dominant gauge-mediated collision terms are included. We show that resonant leptogenesis can be realized with heavy Majorana neutrinos even as light as ∼1 TeV, in complete accordance with the current solar and atmospheric neutrino data.  相似文献   

5.
We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli–Feruglio A4A4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.  相似文献   

6.
Journal of High Energy Physics - In models with flavor symmetries in the leptonic sector leptogenesis can take place in a very different way compared to the standard leptogenesis scenario. We study...  相似文献   

7.
In type I seesaw models with flavor symmetries accounting for the lepton mixing angles the CP asymmetry in right-handed neutrino decays vanishes in the limit in which the mixing pattern is exact. We study the implications that additional degrees of freedom from type II seesaw may have for leptogenesis in such a limit. We classify in a model independent way the possible realizations of type I and II seesaw schemes, differentiating between classes in which leptogenesis is viable or not. We point out that even with the interplay of type I and II seesaws there are generic classes of minimal models in which the CP asymmetry vanishes. Finally we analyze the generation of the lepton asymmetry by solving the corresponding kinetic equations in the general case of a mild hierarchy between the light right-handed neutrino and the scalar triplet masses. We identify the possible scenarios in which leptogenesis can take place.  相似文献   

8.
We show that soft supersymmetry breaking terms involving the heavy sneutrinos can lead to sneutrino-antisneutrino mixing and to new sources of CP violation, which are present even if a single generation is considered. These terms are naturally present in supersymmetric versions of leptogenesis scenarios, and they induce indirect CP violation in the decays of the heavy sneutrinos, eventually generating a baryon asymmetry. This new contribution can be comparable to or even dominate over the asymmetry produced in traditional leptogenesis scenarios.  相似文献   

9.
Thermal leptogenesis is an attractive mechanism that explains in a simple way the matter-antimatter asymmetry of the universe. It is usually studied via the Boltzmann equations, which describes the time evolution of particle densities or distribution functions in a thermal bath. The Boltzmann equations are classical equations and suffer from basic conceptual problems and they lack to include many quantum phenomena. We show how to address leptogenesis systematically in a purely quantum way, by describing non-equilibrium excitations of a Majorana particle in the Kadanoff-Baym equations with significant emphasis on the initial and boundary conditions of the solutions. We apply our results to thermal leptogenesis, computing analytically the asymmetry generated, comparing it with the semiclassical Boltzmann approach. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry. The insertion of standard model decay widths to the particles excitations of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes.  相似文献   

10.
11.
We discuss a unique possibility of generating adiabatic density perturbations and leptogenesis from the spatial fluctuations of the inflaton decay rate. The key assumption is that the initial isocurvature perturbations are created in the right-handed sneutrino sector during inflation which is then converted into adiabatic perturbations when the inflaton decays. We discuss distinct imprints on the cosmic microwave background radiation, which can distinguish nonthermal versus thermal leptogenesis.  相似文献   

12.
We present a model of leptogenesis that preserves lepton number. The model maintains the important feature of more traditional leptogenesis scenarios: The decaying particles that provide the CP violation necessary for baryogenesis also provide the explanation for the smallness of the neutrino Yukawa couplings. This model clearly demonstrates that, contrary to conventional wisdom, neutrinos need not be Majorana in nature in order to help explain the baryon asymmetry of the universe.  相似文献   

13.
We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses and mixing as well as of the baryon asymmetry of the Universe, which is generated through soft leptogenesis employing a CP-violating phase and a resonant behavior in the supersymmetry breaking sector. We calculate the full gauge-annihilation cross section for the Higgs triplets, including all relevant supersymmetric intermediate and final states, as well as coannihilations with the fermionic superpartners of the triplets. We find that these gauge annihilation processes strongly suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis can occur only for a triplet mass at the TeV scale, where the contribution of soft supersymmetry breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity for testing the model in future colliders.  相似文献   

14.
We have studied extensively phenomenological implications in a specific model of brane inflation driven by background supergravity (Choudhury and Pal, 2011) [1], via thermal history of the universe and leptogenesis pertaining to the particle physics phenomenology of the early universe. Using the one loop corrected inflationary potential we have investigated for the analytical expression as well as the numerical estimation for brane reheating temperature for standard model particles. This results in some novel features of reheating from this type of inflation which have serious implications in the production of heavy Majorana neutrinos needed for leptogenesis through the reheating temperature. We have also derived the expressions for the gravitino abundance during reheating and radiation dominated era. We have further estimated different parameters at the epoch of phase transition and revealed their salient features. At the end we have explicitly given an estimate of the amount of CP violation through the effective CP phase which is related to baryon asymmetry as well as gravitino dark matter abundance.  相似文献   

15.
We analyze the neutrino Yukawa matrix by considering three constraints: the out-of-equilibrium condition of the lepton number-violating process responsible for leptogenesis, the upper bound of the branching ratio of the lepton flavor violating decay, and the prediction of large mixing angles using the see-saw mechanism. In a certain parametrization with a bi-unitary transformation, it is shown that the structure which satisfies the constraints can be characterized by only seven types of Yukawa matrices. The constraint of the branching ratio of LFV turns out to be redundant after applying the other two constraints. We propose that this parametrization can be the framework in which the CP asymmetry of a lepton number-violating process can be predicted in terms of observable neutrino parameters at low energy, if necessary, under assumptions following from a theory with additional symmetries. There is an appealing model of the neutrino Yukawa matrix considering the CP asymmetry for leptogenesis, giving a theoretical motivation to reduce the number of free parameters.Arrival of the final proofs: 24 June 2003  相似文献   

16.
Leptogenesis is an appealing framework to account for the baryon asymmetry in the universe. To this end physics beyond the standard model is demanded. In this paper we investigate the possibility to attain successful leptogenesis with composite Majorana neutrinos. We work in the framework of effective gauge-mediated and contact interactions without any reference to an underlying compositeness theory. This approach is the one adopted in all current experimental searches for composite fermions at colliders. In the case of gauge-mediated interactions, we calculate the CP asymmetry in heavy composite neutrino decays. Both the direct and the indirect CP asymmetry are derived and resonant leptogenesis is also discussed. We find that the Sakharov conditions can be met and, for some choice of the parameters, the correct order of magnitude of the baryon asymmetry is reproduced.  相似文献   

17.
If the baryon asymmetry of the Universe is produced by leptogenesis, CP violation is required in the lepton sector. In the seesaw extension of the standard model with three hierarchical right-handed neutrinos, we show that the baryon asymmetry is insensitive to the Pontecorvo-Maki-Nagakawa-Sakata phases: thermal leptogenesis can work for any value of the observable phases. This result was well known when there were no flavor effects in leptogenesis; we show that it remains true when flavor effects are included.  相似文献   

18.
In the context of the minimal seesaw framework, we discuss the implications of Dirac and Majorana mass matrices in which two properties coexist, namely, equalities among matrix elements and texture zeros. Among the large number of general possibilities, only 12 patterns are found to be consistent with the global neutrino oscillation data at the level of the most minimal number of free parameters. The predictions of the allowed textures for mass hierarchy, θ13θ13 and effective mass governing neutrino-less double beta decay are discussed. We also explore the possibility of having non-zero CP violation for each allowed solution. We find that only one allowed solution can accommodate both low and high energy CP violation. We discuss the prediction of this solution for leptogenesis and explore the correlation, between leptogenesis and low energy CP violation.  相似文献   

19.
We review the motivations and some results on leptogenesis in seesaw models with an almost conserved lepton number. The paper is based on a talk given at the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.  相似文献   

20.
Journal of High Energy Physics - We argue that coherent oscillations of the axion field excited by the misalignment mechanism and non-thermal leptogenesis by the saxion decay can naturally explain...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号