首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using a refractive index matching method, we investigate the trajectories of particles in three dimensional granular packing submitted to cyclic shear deformation. The particle motion observed during compaction is not diffusive but exhibits a transient cage effect, similar to the one observed in colloidal glasses. We precisely study the statistics of the step size between two successive cycles and observe that it is proportional to the shear amplitude. The link between the microscopic observations and the macroscopic evolution of the volume fraction during compaction is discussed.  相似文献   

2.
Transients in sheared granular matter   总被引:1,自引:0,他引:1  
As dense granular materials are sheared, a shear band and an anisotropic force network form. The approach to steady-state behavior depends on the history of the packing and the existing force and contact network. We present experiments on shearing of dense granular matter in a 2D Couette geometry in which we probe the history and evolution of shear bands by measuring particle trajectories and stresses during transients. We find that when shearing is stopped and restarted in the same direction, steady-state behavior is immediately reached, in agreement with the typical assumption that the system is quasistatic. Although some relaxation of the force network is observed when shearing is stopped, quasistatic behavior is maintained because the contact network remains essentially unchanged. When the direction of shear is reversed, a transient occurs in which stresses initially decrease, changes in the force network reach further into the bulk, and particles far from the wheel become more mobile. This occurs because the force network is fragile to changes transverse to the force network established under previous shear; particles must rearrange before becoming jammed again, thereby providing resistance to shear in the reversed direction. The strong force network is re-established after displacing the shearing surface , where d is the mean grain diameter. Steady-state velocity profiles are reached after a shear of . Particles immediately outside of the shear band move on average less than 1 diameter before becoming jammed again. We also examine particle rotation during this transient and find that mean particle spin decreases during the transient, which is related to the fact that grains are not interlocked as strongly.Received: 5 March 2004, Published online: 24 August 2004PACS: 45.70.-n Granular systems - 83.80.Fg Granular solids  相似文献   

3.
The deformation in granular material under loading conditions is a problem of great interest currently. In this paper, the micro-mechanism of the localized deformations in stochastically distributed granular materials is investigated based on the modified distinct element method under the plane strain conditions, and the influences of the confining pressure, the initial void ratio and the friction coefficient on the localized deformation and the stability of granular materials are also studied. It is concluded, based on the numerical simulation testing, that two crossed shear sliding planes may occur inside the granular assembly, and deformation patterns vary with the increasing of transverse strain. These conclusions are in good agreement with the present experimental results. By tangential velocity profiles along the direction normal to the two shear sliding planes, it can be found that there are two different shear deformation patterns: one is the fluid-like shear mode and the other is the solid-like shear mode. At last, the influences of various material parameters or factors on localized deformation features and patterns of granular materials are discussed in detail. Supported by the Key Project of the National Natural Science Foundation of China (Grant No. 10532040)  相似文献   

4.
The response of a granular material during a stop-and-go shear experiment is investigated using an annular shear cell and silicagel powders of different particle sizes. The experimental results are examined on the basis of the Dieterich-Rice-Ruina model for solid friction. In addition to making this analogy with solid friction, we describe a new instability that is observed when restarting shear, where the powder bed is found to slip and compact for short hold times but only dilates for long hold times. The minimum hold time to restore a non-slip behaviour has been investigated for different size particles and normal loadings. The observed dependencies show analogies between this behaviour and the sliding rearrangements seen above the stick-slip threshold.  相似文献   

5.
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometry experiments. In steady state, we observe that the material is heterogeneous, and we find that the local rheology presents a continuous transition at low shear rate from a viscous to a shear thickening, Bagnoldian, behavior with shear stresses proportional to the shear rate squared, as predicted by a scaling analysis. We show that the heterogeneity results from an unexpectedly fast migration of grains, which we attribute to the emergence of the Bagnoldian rheology. The migration process is observed to be accompanied by macroscopic transient discontinuous shear thickening, which is consequently not an intrinsic property of granular suspensions.  相似文献   

6.
该文力求寻找一种高效准确检测混凝土构件永存应力的方法.基于声弹性理论提出了一种双横波声速法检测单向受压混凝土构件永存应力的方法,该方法通过测试受力构件第一波速和第二波速,以第一波速和第二波速的平方差为基础构建综合声学参数来检测单向受压混凝土构件永存应力.所述第一波速为声波传播方向与应力方向垂直、质点振动方向与应力方向平...  相似文献   

7.
The uniaxial compaction of nanopowders is simulated using the granular dynamics in the 2D geometry. The initial arrangement of particles is represented by (i) a layer of particles executing Brownian motion (isotropic structures) and (ii) particles falling in the gravity field (anisotropic structures). The influence of size effects and the size of a model cell on the properties of the structures are studied. The compaction of the model cell is simulated with regard to Hertz elastic forces between particles, Cattaneo-Mindlin-Deresiewicz shear friction forces, and van der Waals-Hamaker dispersion forces of attraction. Computation is performed for monodisperse powders with particle sizes ranging from 10 to 400 nm and for “cohesionless” powder, in which attractive forces are absent. It is shown that taking into account dispersion forces makes it possible to simulate the size effect in the nanopowder compaction: the compressibility of the nanopowder drops as the particles get finer. The mean coordination number and the axial and lateral pressures in the powder systems are found, and the effect of the density and isotropy of the initial structure on the compressibility is analyzed. The applicability of well-known Rumpf’s formula for the size effect is discussed.  相似文献   

8.
Simple empirical relations have been proposed to relate a limited number of directly measurable non-acoustic properties of an unconsolidated granular mix to its characteristic acoustic impedance and propagation constant. These properties are: characteristic particle dimension, porosity, tortuosity and the density of the grain base. It is believed that the model accounts heuristically for the mechanical friction between the elements of the rigid frame, the absorption in the frame micro-pores, and the degree of compaction. These effects can be important and are linked to the value of material density. This work presents practical applications of the proposed model for the prediction of the acoustic characteristics of hard-backed layers of loose granular mixes which can be used for acoustic absorption and insulation. It is shown that the predictions are in excellent agreement with the measured data for a representative range of loose granular mixes. A comparison of the results of the 4-parameter Attenborough model for the acoustic properties of porous media and the experimental data is made also. This model is used extensively to predict the acoustic properties of porous ground and granular media. The accuracy of this model with respect to loose granular materials is discussed.  相似文献   

9.
Compaction of a granular material under cyclic shear   总被引:1,自引:0,他引:1  
In this paper we present experimental results concerning the compaction of a granular assembly of spheres under periodic shear deformation. The dynamics of the system is slow and continuous when the amplitude of the shear is constant, but exhibits rapid evolution of the volume fraction when a sudden change in shear amplitude is imposed. This rapid response is shown to be uncorrelated with the slow compaction process. Received 31 March 2000  相似文献   

10.
双轴压缩下颗粒物质剪切带的形成与发展   总被引:3,自引:0,他引:3       下载免费PDF全文
毕忠伟  孙其诚  刘建国  金峰  张楚汉 《物理学报》2011,60(3):34502-034502
本文采用离散元方法,研究了双轴压缩的颗粒体系在刚性边界约束下,局部剪切带的形成和发展过程,注重分析了细观的体积分数、配位数、颗粒旋转角度等参数以及力链结构形态的演变.并从颗粒体系jamming 相图中J点附近的边壁压强和配位数随体积分数的标度规律出发,分析了剪切带内外的体积分数和配位数的变化.结果表明:剪切带形成于颗粒体系的塑性变形开始阶段,此时体系发生剪胀,颗粒体积分数减小,颗粒体系抵抗旋转的能力降低,开始出现细小剪切带,随着轴向应变的继续,细小剪切带发生连接,最终导致贯穿性优势剪切带形成 关键词: 颗粒物质 力链 双轴压缩 剪切带  相似文献   

11.
We present measurements of the particle velocity distribution in the slow flow of granular material through vertical channels. The velocities of particles adjacent to the smooth, transparent front face of the channel were determined by video imaging and particle tracking. We find that the mean velocity changes sharply in shear layers near the side walls, but remains constant in a substantial core. The velocity distribution is non-Gaussian, is anisotropic, and follows a power law at large velocities. Remarkably, the distribution is identical in the shear layer and the core. We show evidence of spatially correlated motion, and propose a mechanism for the generation of fluctuational motion in the absence of shear.  相似文献   

12.
We propose a simple continuum model to interpret the shearing motion of dense, dry and cohesion-less granular media. Compressibility, dilatancy and Coulomb-like friction are the three basic ingredients. The granular stress is split into a rate-dependent part representing the rebound-less impacts between grains and a rate-independent part associated with long-lived contacts. Because we consider stationary flows only, the grain compaction and the grain velocity are the two main variables. The predicted velocity and compaction profiles are in apparent qualitative agreement with most of the experimental or numerical results concerning free-surface shear flows as well as confined shear flows.Received: 24 March 2004, Published online: 29 June 2004PACS: 45.70.Ht Avalanches - 45.70.-n Granular systems - 83.80.Fg Granular solids  相似文献   

13.
Triboelectric charging occurs in granular insulating systems even when all particles are composed of identical material. A simple model is used here to address triboelectric charging in such systems. The basis of the model is the existence of electrons trapped in high-energy states, which can be released during collisions with another particle and transferred to the other particle. This model shows that triboelectric charging in insulator systems composed of particles of identical material can be attributed to a distribution of particle sizes, such that smaller particles tend to charge negatively and larger particles tend to charge positively. This polarity of charging has been observed in field studies of sand storms, dust devils and volcanic plumes, and most laboratory experiments on triboelectric charging in granular systems.  相似文献   

14.
The evolution of energy in subaerial and subaqueous granular column collapses is studied.Employing the refractive index matching method and planar laser-induced fluorescence technique,we obtain granular and liquid images simultaneously in a single experiment of subaqueous flow.Particle image velocimetry and particle tracking velocimetry are used to process the data for the fluid and granular phase.We find stepwise decreases in the total kinetic energy of the granular material.The stage of rapidl...  相似文献   

15.
A compaction test has been developed to examine the lubrication and fusion characteristics of PVC compounds. A model of the compaction process at low pressures is proposed which involves two distinct modes of compaction. Initial densification quickly reaches a plateau density, the magnitude of which is determined primarily by frictional properties and the elastic deformability. of the resin particles. A second slower rate densification is attributed to fusion within the PVC resin grains, as well as diffusion between grains. It is shown that compaction alone is insufficient for grain boundary destruction. As a result, significantly higher temperatures are needed to achieve a given state of elasticity development by compaction when compared to material produced by shear processing.  相似文献   

16.
Particle dynamics simulations are carried out to study triboelectric charging in granular systems composed of a single insulating material. The simulations implement a model in which electrons trapped in localized high energy states can be transferred during collisions to low energy states in the other particle. It is shown that this effect alone can generate electrostatic charging in the system, and cause net electron transfer from larger particles to smaller particles. The magnitude of charging is small for systems of a single particle size but becomes much greater for a system with polydispersal particle sizes, due to the net electron transfer from larger to smaller particles. The negative charge of smaller particles, and positive charge of larger particles has been observed in field studies and laboratory experiments of granular systems.  相似文献   

17.
We introduce a mesoscopic model for the formation and evolution of shear bands in loose granular media. Numerical simulations reveal that the system undergoes a nontrivial self-organization process which is governed by the motion of the shear band and the consequent restructuring of the material along it. High density regions are built up, progressively confining the shear bands in localized regions. This results in an inhomogeneous aging of the material with a very slow increase in the mean density, displaying an unusual glassylike system-size dependence.  相似文献   

18.
The mechanism of dry granular convection within dense granular flows is mostly neglected by current analytical heat equations describing such materials, for example, in geophysical analyses of shear gouge layers of earthquake and landslide rupture planes. In dry granular materials, the common assumption is that conduction by contact overtakes any other mode of heat transfer. Conversely, we discover that transient correlated motion of heated grains can result in a convective heat flux normal to the shear direction up to 3-4 orders magnitude larger than by contact conduction. Such a thermal efficiency, much higher than that of water, is appealing and might be common to other microscopically structured fluids such as granular pastes, emulsions, and living cells.  相似文献   

19.
The formation of granular ripples under liquid shear flow in an annular channel is studied experimentally. The erodible granular bed is subject to weakly turbulent flows without a defined sharp boundary layer close to the granular bed. The flow field and the degree of turbulence is characterized quantitatively by using a particle image velocimeter and a laser-Doppler velocimeter, respectively. A new range of particle Reynolds numbers at the lower limit of the Shields diagram were explored. Quantitative measurements of the granular flow on the surface reveal that the threshold for particle motion coincides within the order of one percent with the threshold for ripple formation. In fully developed ripples it was found that on the leeward side of the ripples regions of low-velocity gradients exist where granular motion is scarce, indicating that the coupling between the ripples is mainly caused by the flow field of the liquid.  相似文献   

20.
The negative viscosity of a colloidal dispersion composed of ferromagnetic rod-like particles, which have a magnetic moment normal to the particle axis, have been investigated. A simple shear flow problem has been treated to clarify the particle orientational distribution and rheological properties of such a semi-dense dispersion, under circumstances of an external magnetic field applied in the direction normal to the shear plane of a simple shear flow. The results obtained here are summarized as follows. For the cases of a very strong magnetic field and magnetic interactions between particles, the magnetic moment of the rod-like particles is significantly restricted in the magnetic field direction, so that the particle approximately aligns in the shear flow direction. Also, the particle can easily rotate around the axis of the cluster almost freely even in a simple shear flow. Characteristic orientational properties of the particle cause negative viscosity, as in the previous study for a dilute dispersion. However, magnetic particle-particle interactions have a function to make such negative viscosity decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号