首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonant inelastic light scattering experiments access the low lying excitations of electron liquids in the fractional quantum Hall regime in the range 2/5≥ν≥1/3. Modes associated with changes in the charge and spin degrees of freedom are measured. Spectra of spin reversed excitations at filling factor ν?1/3 and at ν?2/5 identify a structure of lowest spin-split Landau levels of composite fermions (CFs) that is similar to that of electrons. Observations of spin wave excitations enable determinations of energies required to reverse spin. The spin reversal energies obtained from the spectra illustrate the significant residual interactions of composite fermions. At ν=1/3 energies of spin reversal modes are larger but relatively close to spin conserving excitations that are linked to activated transport. Predictions of composite fermion theory are in good quantitative agreement with experimental results.  相似文献   

2.
Using the bosonization technique, a theory for the collective excitations of the interacting electrons in quantum wires with two subbands occupied is developed. The dispersion relations for the inter-subband charge and spin density excitations are determined. The results are used to interpret the features observed in recent measurements of the Raman spectra of AlGaAs/GaAs quantum wires, particularly for photon energies near band gap resonance. It is shown that peaks previously identified as “single particle excitations” are signatures of higher order collective spin density excitations. Predictions about the observability of the interband modes are made. Received 8 February 1999  相似文献   

3.
Applying a three-band model and the random phase approximation, we theoretically study the spin excitations in nickelate superconductors, which have been newly discovered. The spin excitations were found to be incommensurate in the low energy region.The spin resonance phenomenon emerged as the excitation energy increased. The intensity can be maximized at the incommensurate or commensurate momentum, depending on the out-of-plane momentum. The spin excitations reverted to incommensurate at higher energies. We also discuss the similarities and differences in the spin excitations of nickelate and cuprate superconductors.Our predicted results can be later validated in inelastic neutron scattering experiments.  相似文献   

4.
《Physics letters. A》2002,303(1):81-86
Using the exact diagonalization technique, we study the effect of geometrical frustration on single-particle, spin and charge excitations in the Hubbard model in a metallic state close to half-filling. As the frustration increases, the magnetic order in the system is suppressed and the peak in the single-particle spectrum becomes sharper, indicating enhanced quasiparticle formation. Careful examination of spin and charge excitations shows that increasing frustration also leads to the merge of spin and charge excitation energies to that of the single-particle excitation. This is consistent with a Fermi liquid having well-defined quasiparticles with both spin and charge characteristics. The calculated results show that geometrical frustration plays an important role in defining the nature of quasiparticles in itinerant correlated electron systems.  相似文献   

5.
Inelastic neutron scattering is used to study transverse-polarized magnetic excitations in the quasi-one-dimensional S = 1/2 antiferromagnet BaCu2Si2O7, where the saturation value for the Neel order parameter is m(0) = 0.12&mgr;(B) per spin. At low energies the spectrum is totally dominated by resolution-limited spin-wave-like excitations. An excitation continuum sets in above a well-defined threshold frequency. Experimental results are discussed in the context of current theories for weakly interacting quantum half-integer-spin chains.  相似文献   

6.
We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe2As2 (T_{N}=200-220 K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the magnetic spectrum S(Q,Planck's omega) consists of a Bragg peak at the elastic position (Planck's omega=0 meV), a spin gap (Delta< or =6.5 meV), and sharp spin-wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across T_{N}, the low-temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe2As2 is therefore consistent with a first order phase transition, similar to the structural lattice distortion.  相似文献   

7.
Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020+/-0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3.  相似文献   

8.
Measurements of low-lying spin excitations by inelastic light scattering unveil a delicate balance between spin reversal and Fermi energies in the Fermi sea of composite fermions that emerges in the limit of nu --> 1/2. The interplays between these two fundamental quasiparticle interactions are uncovered in lowest spin-flip excitations in which the spin orientation and Landau level index of composite fermions change simultaneously. A collapse of the spin-flip excitation gap as nu --> 1/2 is linked to vanishing quasiparticle energy level spacings and loss of full spin polarization.  相似文献   

9.
The Raman spectra of quantum wires in the region of electronic intra-band excitations are investigated using one- and two-band models based on the Luttinger approximation with spin. Structures related to charge and spin density modes are identified, and analyzed with respect to their behavior with photon energy and temperature. It is found that the low-energy peaks in the polarized spectra, close to resonance that are commonly assigned to “single particle excitations”, can be interpreted as the signature of spin density excitations. A broad structure in the resonant depolarized spectrum is predicted above the frequency of the spin density excitations. This is due to simultaneous but independent propagation of spin and charge density modes. The results, when compared with experiment, show, that the electronic collective excitations of quantum wires at low energies are characteristic for a non-Fermi liquid. Received: 25 March 1998 / Accepted: 3 June 1998  相似文献   

10.
The coupling of antiferromagnetic spin excitations and propagating holes has been studied theoretically on a square lattice in order to investigate the dependence of antiferromagnetic order on hole doping, being of relevance, e.g., for the Cu–3 d9 system in antiferromagnetic CuO2-planes of high-Tc superconductors. An effective Hamiltonian has been used, which results from a 2D Hubbard model (hopping integral t) with holes and with strong on-site Coulomb repulsion U. Bare antiferromagnetic excitations and holes with energies of the same order of magnitude t2/U are interacting via a coupling term being proportional to t and allowing holes to hop by emitting and absorbing spinwaves. In terms of a self-consistent one-loop approximation the renormalization of the spectral function both of holes and antiferromagnetic spin excitations are calculated.  相似文献   

11.
Gutzwiller's variational method has been used to study the spin waves in the ferromagnetic state of a narrow band. The spin wave energies are investigated in both the nondegenerate and the doubly degenerate bands. The electron correlation restricts the spin excitations and so improves the RPA solutions of the magnon energies. It is found that the bare intra-atomic interaction energies in the RPA solutions are replaced by smaller effective ones. In the case of a degenerate band model, contrary to the constant value as predicted by RPA, the Stoner gap parameter is reduced by the correlation effect.  相似文献   

12.
We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical, an anomalously large Knight shift is observed. Our findings suggest the existence of a magnetic-field-induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [Phys. Rev. Lett. 91, 077202 (2003)]].  相似文献   

13.
Hole dynamics in spin and orbital ordered vanadium perovskites   总被引:1,自引:0,他引:1  
A theory of doped perovskite vanadates with spin and orbital orders is presented. Mobile holes are strongly renormalized by spin excitations (magnons) in the spin G-type and orbital C-type (SG-OC) order, and orbital excitations (orbitons) in the spin C-type and orbital G-type (SC-OG) one. Hole dynamics in a staggered t(2g) orbital array is distinguished from that in the antiferromagnetic order and the e(g) orbital one. The fragile character of the (SG-OC) order in Y1-xCaxVO3 is attributed to the orbiton softening induced by a reduction of the spin order parameter.  相似文献   

14.
We study low temperature properties of a spinless interacting Fermi gas in the trimerized kagomé lattice. The case of two fermions per trimer is described by a quantum spin 1/2 model on the triangular lattice with couplings depending on the bond directions. Using exact diagonalizations we show that the system exhibits nonstandard properties of a quantum spin-liquid crystal, combining a planar antiferromagnetic order with an exceptionally large number of low-energy excitations.  相似文献   

15.
Strong resonant enhancements of inelastic light scattering from the long wavelength inter-Landau level magnetoplasmon and the intra-Landau level spin wave excitations are seen for the fractional quantum Hall state at ν=1/3. The energies of the sharp peaks (FWHM 0.2 meV) in the profiles of resonant enhancement of inelastic light scattering intensities coincide with the energies of photoluminescence bands assigned to negatively charged exciton recombination. To interpret the observed enhancement profiles, we propose three-step light scattering mechanisms in which the intermediate resonant transitions are to states with charged excitonic excitations.  相似文献   

16.
We numerically extract large-scale excitations above the ground state in the 3-dimensional Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agreement with the mean field picture. Of further interest are the position-space properties of these excitations. First, our study of their topological properties show that the majority of the large-scale excitations are sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when the system size is increased. We conclude that either finite size effects are very large even when the spin overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified. Received 14 August 2000  相似文献   

17.
Using an exact Bethe ansatz solution, we rigorously study excitation spectra of the spin-1/2 Fermi gas (called Yang–Gaudin model) with an attractive interaction. Elementary excitations of this model involve particle-hole excitation, hole excitation and adding particles in the Fermi seas of pairs and unpaired fermions. The gapped magnon excitations in the spin sector show a ferromagnetic coupling to the Fermi sea of the single fermions. By numerically and analytically solving the Bethe ansatz equations and the thermodynamic Bethe ansatz equations of this model, we obtain excitation energies for various polarizations in the phase of the Fulde–Ferrell–Larkin–Ovchinnikov-like state. For a small momentum (long-wavelength limit) and in the strong interaction regime, we analytically obtained their linear dispersions with curvature corrections, effective masses as well as velocities in particle-hole excitations of pairs and unpaired fermions. Such a type of particle-hole excitations display a novel separation of collective motions of bosonic modes within paired and unpaired fermions. Finally, we also discuss magnon excitations in the spin sector and the application of Bragg spectroscopy for testing such separated charge excitation modes of pairs and single fermions.  相似文献   

18.
We present a theoretical investigation of elementary excitations in anisotropic antiferromagneticS=1 chains using the concept of domain walls in string (hidden) order. Domain walls are classified by the internal spin projectionS dw z . We calculate energies and string correlation 0 functions of low lying excited states of the domain wall type in the Haldane phase and compare the results to those of numerical computations. The boundaries of the Haldane phase are determined from the instability of these excitations with respect to the ground state. The interaction between two domain walls is found to be proportional to the productS dw z , S dw z 2, it is effectively repulsive 0140 for equal spin projections.  相似文献   

19.
The photoinduced magnetism in Mn-tetracyanoethylene (TCNE) molecule-based magnets is ascribed to charge-transfer excitations from manganese to TCNE. Charge-transfer energies are calculated using density functional theory; photoinduced magnetization is described using a model Hamiltonian based on a double-exchange mechanism. Photoexciting electrons from the manganese core spins into the lowest unoccupied orbital of TCNE with photon energies around 3 eV increase the magnetization through a reduction of the canting angle of the manganese core spins for an average electron density on TCNE less than one. When photoexciting with a smaller energy, divalent TCNE molecules are formed. The delocalization of the excited electron causes a local spin flip of a manganese core spin.  相似文献   

20.
The two-layer square lattice quantum antiferromagnet with spins 12 shows a zero-field magnetic order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state; similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representation, we propose an approximate ground state wavefunction which consistently covers all phases by means of a unitary transformation. The excitations can be efficiently described as independent bosons; in the antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1 excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations throughout the whole phase diagram. Received 23 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号