首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.  相似文献   

2.
We present high resolution photoassociation spectroscopy of ultracold~(23)Na~(133)Cs molecules in a long-range c~3Σ~+state below the(3 S_(1/2)+ 6 P_(3/2)) asymptote. We perform photoassociation spectroscopy in a dual-species magneto-optical trap(MOT) and detect the photoassociation resonances using trap-loss spectroscopy. By fitting the experimental data with the semi-classical Le Roy–Bernstein formula, we deduce the long-range molecular coefficient C6 and derive the empirical potential energy curve in the long-range region.  相似文献   

3.
We observe vibrational states by photoassociation spectroscopy of cold He(2 ^{3}S) atoms. Photoassociation resonances are detected as peaks in the Penning ionization rate over a frequency range of 20 GHz below the atomic 2 ^{3}S_{1}-2 ^{3}P_{2} transition frequency. We have observed three vibrational series, of which two can be identified. A possible mechanism to explain the observed increase of the Penning ionization rate is discussed.  相似文献   

4.
We observed high-resolution photoassociation spectra of laser-cooled ytterbium (Yb) atoms in the spin-forbidden 1S0 - 3P1 intercombination line. The rovibrational levels in the 0u+ state were measured for red detunings of the photoassociation laser ranging from 2.9 MHz to 1.97 GHz with respect to the atomic resonance. The rotational splitting of the vibrational levels near the dissociation limit were fully resolved due to the sub-MHz linewidth of the spectra in contrast to previous measurements using the spin-allowed singlet transition. In addition, from a comparison between the spectra of 174Yb and those of 176Yb, a d-wave shape resonance for 174Yb is strongly suggested.  相似文献   

5.
We have observed Feshbach resonances in collisions between ultracold 52Cr atoms. This is the first observation of collisional Feshbach resonances in an atomic species with more than one valence electron. The zero nuclear spin of 52Cr and thus the absence of a Fermi-contact interaction leads to regularly spaced resonance sequences. By comparing resonance positions with multichannel scattering calculations we determine the s-wave scattering length of the lowest (2S+1)Sigma(+)(g) potentials to be 112(14) a(0), 58(6) a(0), and -7(20) a(0) for S=6, 4, and 2, respectively, where a(0)=0.0529 nm.  相似文献   

6.
We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With the increase of the photoassociation laser intensity, the linear variation of the frequency shift is measured by recording the photoassociation spectra of the long-range 0_u~+ state of Cs molecule below the 6S_(1/2)+ 6P_(1/2) dissociation limit at different magnetic fields.The slope of the frequency shift to the intensity of the photoassociation laser exhibits a strong dependence on the external magnetic field. The experimental data is simulated with an analytic theory model, in which a single channel rectangular potential with the tunable well depth is introduced to acquire the influence of the magnetic field on the atomic behavior in the effective range where photoassociation occurs.  相似文献   

7.
The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the 85Rb(5S1/2) + 133Cs(6P3/2) dissociation limit followed by spontaneous emission. The molecules are detected by resonance enhanced two-photon ionization. Using accurate quantum chemistry calculations of the potential energy curves and transition dipole moment, we interpret the observed photoassociation process as occurring at short internuclear distance, in contrast with most previous cold atom photoassociation studies. The vibrational levels excited by photoassociation belong to the 5th 0+ or the 4th 0? electronic states correlated to the Rb(5P1/2, 3/2) + Cs(6S1/2) dissociation limit. The computed vibrational distribution of the produced molecules shows that they are stabilized in deeply bound vibrational states of the lowest triplet state. We also predict that a noticeable fraction of molecules is produced in the lowest level of the electronic ground state.  相似文献   

8.
We investigate the high resolution photoassociation spectra of ~(85)Rb_2 molecules in 0~+_u long range state below the(5S_(1/2)+ 5P_(1/2)) asymptote. The ~(85)Rb atomic samples are trapped in a dark magneto–optical trap(MOT) and prepared in the dark state. With the help of trap loss technique, we obtain considerable photoassociation spectroscopy with rovibrational resolution, some of which have never been observed before. The observed spectrum is fitted by a rigid rotation model, and the rotational constants of ultracold ~(85)Rb_2 molecule in long range 0~+_u are obtained for different vibrational states. By applying the Le Roy–Bernstein method, we assign the vibrational quantum numbers and derive C_3 coefficient, which is used to obtain the potential energy curve.  相似文献   

9.
We present a new measurement of the s-wave scattering length a of spin-polarized helium atoms in the 2(3)S1 metastable state. Using two-photon photoassociation spectroscopy and dark resonances, we measure the energy E(nu)=14= -91.35+/- 0.06 MHz of the least-bound state nu = 14 in the interaction potential of the two atoms. We deduce a value of a=7.512+/-0.005 nm, which is at least 100 times more precise than the best previous determinations and is in disagreement with some of them. This experiment also demonstrates the possibility to create exotic molecules binding two metastable atoms with a lifetime of the order of 1 micros.  相似文献   

10.
We present spectrally resolved pump-probe experiments on the photoassociation of ultracold rubidium atoms with shaped ultrashort laser pulses. The pump pulse causes a free-bound transition leading to a coherent transient signal of rubidium molecules in the first excited state. In order to achieve a high frequency resolution the bandwidth of the pump pulse is reduced to a few wavenumbers. The frequency dependence of the transient signal close to the D1 atomic resonance is investigated for characteristic pump-probe delay times. The observed spectra, which show a pronounced dip for pump-probe coincidence, are interpreted using quantum dynamical calculations.  相似文献   

11.
We model combined photoassociation and Feshbach resonances in a Bose-Einstein condensate. When the magnetic field is far-off resonance, cross coupling between the two target molecules--enabled by the shared dissociation continuum--leads to an anomalous dispersive shift in the position of laser resonance, as well as unprecedented elimination and enhancement of resonant photoassociation via quantum interference. For off-resonant lasers, a dispersive shift and quantum interference appear similarly in resonant three-body Feshbach losses, except that the Feshbach node is tunable with intensity.  相似文献   

12.
We report photoassociation spectroscopy of 174Yb for the 1S(0)-1P1 transition at 1 microK, where only the s-wave scattering state contributes to the spectra. The wave function of the s-wave scattering state is obtained from the photoassociation efficiency, and we determine that the C6 potential coefficient is 2300+/-250 a.u. and the s-wave scattering length is 5.53+/-0.11 nm. Based on these parameters, we discuss the scattering properties of s- and d-wave states.  相似文献   

13.
We present experimental investigation on the fluorescence profiles observed by excitation of the hyperfine transitions of the second resonance line of potassium with a wavelength of 404.4 nm in dependence on the atomic density. This leads to both direct decay of the excited level population to the ground state (violet fluorescence), and to cascade decay via the first resonance lines (infrared fluorescence). It has been shown that the behavior of these two fluorescence profiles is different: increasing the atomic density, the violet fluorescence profile exhibits a well-pronounced self-absorption dip, while the infrared line does not show any narrow-width reduced absorption structure. Moreover, the profiles of the infrared line have a higher signal-to-noise ratio than that of the violet line. Our investigations show that beside atomic population, atomic polarization is also transferred by the cascade transitions. This is evidenced by registration of coherent magneto-optical resonances at the two fluorescence lines. The signal-to-noise ratio of these resonances registered at the first resonance line is significantly higher than at those obtained at the second resonance line. The proposed study makes it possible to examine cascade transitions in alkali atoms, particularly the preservation of atomic polarization, i.e. the coherence transfer by cascade transitions.  相似文献   

14.
We have observed and measured the phase lag in the phase-dependent variation of the asymmetric photoelectron angular distribution of atomic barium. For these measurements, we photoionize the 6s6p(1)P(1) intermediate state of barium with concurrent one-photon and two-photon (omega-2omega) interactions. The laser interactions ionize the atoms in the vicinity of the series of autoionizing states converging upon the 5d(2)D(5/2) threshold. We study the variation of the phase lag as a function of the laser frequency. The variation shows strong correlation to the location of the autoionizing resonances, with full range exceeding 2pi, confirming the critical role of these resonances.  相似文献   

15.
Two distinct strongly non-linear scenarios of molecule formation in an atomic Bose-Einstein condensate (either by photoassociation or Feshbach resonance) corresponding to large and small field detuning are revealed. By examining arbitrary external field configurations, we show that the association process in the first case is almost non-oscillatory in time while in the second case the evolution of the system displays strongly pronounced Rabi-type oscillations. We construct highly accurate approximate solutions for both limit cases. We show that at strong coupling limit the non-crossing models are able to provide conversion of no more than one third of the initial atomic population. Finally, we show that for constant-amplitude models involving a finite final detuning the strong interaction limit is not optimal for molecule formation.  相似文献   

16.
We demonstrate the existence of a new mechanism for the formation of ultracold molecules via photoassociation of cold cesium atoms. The experimental results, interpreted with numerical calculations, suggest that a resonant coupling between vibrational levels of the 0+u (6s+6p1/2) and (6s+6p3/2) states enables formation of ultracold molecules in vibrational levels of the ground state well below the 6s+6s dissociation limit. Such a scheme should be observable with many other electronic states and atomic species.  相似文献   

17.
We survey results on the creation of heteronuclear Fermi molecules by tuning a degenerate Bose-Fermi mixture into the neighborhood of an association resonance, either photoassociation or Feshbach, as well as the subsequent prospects for Cooper-like pairing between atoms and molecules. In the simplest case of only one molecular state, corresponding to either a Feshbach resonance or one-color photoassociation, the system displays Rabi oscillations and rapid adiabatic passage between a Bose-Fermi mixture of atoms and fermionic molecules. For two-color photoassociation, the system admits stimulated Raman adiabatic passage (STIRAP) from a Bose-Fermi mixture of atoms to stable Fermi molecules, even in the presence of particle-particle interactions. By tailoring the STIRAP sequence it is possible to deliberately convert only a fraction of the initial atoms, leaving a finite fraction of bosons behind to induce atom-molecule Cooper pairing via density fluctuations; unfortunately, this enhancement is insufficient to achieve a superfluid transition with present ultracold technology. We therefore propose the use of an association resonance that converts atoms and diatomic molecules (dimers) into triatomic molecules (trimers), which leads to a crossover from a Bose-Einstein condensate of trimers to atom-dimer Cooper pairs. Because heteronuclear dimers may possess a permanent electric dipole moment, this overall system presents an opportunity to investigate novel microscopic physics.Received: 16 June 2004, Published online: 21 September 2004PACS: 03.75.Ss Degenerate Fermi gases - 05.30.Fk Fermion systems and electron gas - 34.10. + x General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) - 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 21.10.-k Properties of nuclei; nuclear energy levels  相似文献   

18.
We have realized a mixed atomic and molecular trap, constituted by a Cs vapor-cell magneto-optical trap and a quadrupolar magnetic C s(2) trap, using the same magnetic field gradient. We observed the trapping of 2x 10(5) molecules, formed and accumulated in the metastable a (3)Sigma(+ )(u) state at a temperature of 30+/-10 microK through a approximately 150 ms photoassociation process. The lifetime of the trapped molecular cloud limited by the Cs background gas pressure is on the order of 1 s.  相似文献   

19.
The high-resolution photoassociation spectrum of the ultracold cesium molecular 0_u~+ state below the 6S 1/2 + 6P 1/2 limit is presented in this paper. The saturation of the photoassociation scattering probability is observed from the dependence of the trap-loss probability on the photoassociation laser intensity. The corresponding resonant line width is also demonstrated to increase linearly with increasing photoassociation laser intensity. Our experimental data have good consistency with the theoretical saturation model of Bohn and Julienne Bohn J L and Julienne P S 1999 Phys. Rev. A 60 1].  相似文献   

20.
We simulate numerically the photodissociation of molecules into noncondensate atom pairs that accompanies photoassociation of an atomic Bose-Einstein condensate into a molecular condensate. Such rogue photodissociation sets a limit on the achievable rate of photoassociation. Given the atom density rho and mass m, the limit is approximately 6(planck)rho(2/3)/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号