首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Close-packed Co-Cu chains of various length and composition were assembled from single Co and Cu atoms on Cu(111) by atom manipulation in a low-temperature scanning tunneling microscope. Local spectroscopy reveals significant electronic Co-Cu coupling leading to confined quantum states delocalized along the heteroatomic chain. Composite Co-Cu chains provide a model case in which the quantum state of an atomic-scale host structure can be tuned by the controlled incorporation of foreign atoms.  相似文献   

2.
The spin state of single magnetic atoms and molecules at surfaces is of fundamental interest and may play an important role in future atomic-scale technologies. We demonstrate the ability to tune the coupling between the spin of individual cobalt adatoms with their surroundings by controlled attachment of molecular ligands. The strength of the coupling is determined via the Kondo resonance by low-temperature scanning tunneling spectroscopy. Spatial Kondo resonance mapping is introduced as a novel imaging tool to localize spin centers in magnetic molecules with atomic precision.  相似文献   

3.
Avinash M. Dongare 《哲学杂志》2013,93(34):3877-3897
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.  相似文献   

4.
We demonstrate the controlled incorporation of P dopant atoms in Si(001), presenting a new path toward the creation of atomic-scale electronic devices. We present a detailed study of the interaction of PH3 with Si(001) and show that it is possible to thermally incorporate P atoms into Si(001) below the H-desorption temperature. Control over the precise spatial location at which P atoms are incorporated was achieved using STM H lithography. We demonstrate the positioning of single P atoms in Si with approximately 1 nm accuracy and the creation of nanometer wide lines of incorporated P atoms.  相似文献   

5.
From an interplay of simultaneous Kelvin probe force microscopy and noncontact atomic force microscopy we study atomic-scale variations in the electronic surface potential on TiO(2)(110). Both imaging channels reveal an atomic contrast reflected by the geometry and charged state of the alternating rows of Ti and O surface atoms. From a thorough cross-section analysis we add significant trust to the concept of a local contact potential difference, and determine from this the chemical identity of individual surface species and their role in setting up the local surface potential.  相似文献   

6.
A three-dimensional molecular dynamics (MD) model is utilized to investigate the effect of tool geometry on the deformation process of the workpiece and the nature of deformation process at the atomic-scale. Results show that different states exist between the atomic force microscope (AFM) pin tool and the workpiece surface, i.e. the non-wear state, the ploughing state, the state in which ploughing is dominant and the state in which cutting plays a key role. A relationship between the deformation process of the workpiece and the potential energy variation is presented. The potential energy variation of atoms in different deformed regions in the workpiece such as plastically deformed region, elastically deformed region and the mixed deformation region is different. The features of variations of potential energy are discussed.  相似文献   

7.
原子及近原子尺度制造是直接以原子为操纵对象,构建具有特定功能的原子尺度结构,并实现批量生产以满足所需要的前沿制造技术,是国际学术研究的前沿热点问题.本综述总结了核酸材料在精准原子制造中的应用及前景,从核酸材料的基本结构与功能出发,论述了DNA与金属原子相互作用的基本原理.从天然核酸材料、人工碱基"分子元素"、核酸纳米结...  相似文献   

8.
Fermi gases confined in tight one-dimensional waveguides form two-particle bound states of atoms in the presence of a strongly attractive interaction. Based on the exact solution of the one-dimensional spin-1/2 interacting Fermi gas, we demonstrate that a stable excited state with no pairing between attractive fermionic atoms can be realized by a sudden switch of interaction from the strongly repulsive regime to strongly attractive regime. Such a state is an exact fermionic analog of the experimentally observed super-Tonks-Girardeau state of bosonic Cesium atoms [Science 325, 1224 (2009)] and should be possible to be observed by the experiment. The frequency of the lowest breathing mode of the fermionic super-Tonks-Girardeau gas is calculated as a function of the interaction strength, which could be used as a detectable signature for the experimental observation.  相似文献   

9.
We present a scheme to realize two‐direction optical switch by a single‐mode optical cavity containing some four‐level atoms. The high switching efficiency can be obtained through low photon loss and large third‐order nonlinear susceptibility of this N‐type atomic system in cavity. Without the microwave source, it can be reduced to a Λ‐type atomic system where a coupling laser is used to realize single intracavity electromagnetically induced transparency (EIT). Namely, the probe field can be transmitted almost totally at resonance. Thus a two‐direction optical switch is operated and the state for forward (backward) direction is set as “open” (“closed”). When microwave source is introduced, dressed splitting of intracavity dark state happens. The probe field is reflected almost completely at resonance and the state of the optical switch at forward and backward directions (transmitted and reflected channels) is shifted as “closed” and “open”, respectively. Moreover, this scheme is much advantageous to realize splitting of intracavity dark state because weak microwave field () induces the coupling between intracavity dark state and one sublevel of ground state. While a strong pump laser () which couples the intracavity dark state with an excited level is applied to realize this splitting in ref. [Phys. Rev. A 85 013814 (2012)].  相似文献   

10.
Computer simulation of sapphire nitridation used to obtain nitride-based heterostructures (GaN) on an Al2O3 substrate has been performed. The adhesion of atomic nitrogen to the sapphire (0001) surface is investigated ab initio. The possibility of replacing surface-layer oxygen atoms with nitrogen atoms has been examined. The calculated results indicate that adsorbed nitrogen atoms occupy the most stable positions above surface oxygen atoms at different nitrogen concentrations. The changes in the total system energy after replacement of surface oxygen atoms with nitrogen atoms have been calculated. It turns out that oxygen replacement is energetically unfavorable for a single nitrogen adatom. However, this process becomes energetically favorable if the concentration of nitrogen atoms increases. This outcome, obtained for the first time, enables better understanding of the atomic-scale mechanism of sapphire nitridation.  相似文献   

11.
对于一个三能级原子体系,原子的两个基态能级通过微波耦合起来,其中一个基态能级可被激发到里德堡态,从而可观察量子跳跃现象.本文采用量子轨线方法研究了微波调制的里德堡原子集体量子跳跃.研究结果表明,微波耦合基态能级可以提高光子关联,增强光子聚束效应,即使较少的原子中也可以观察到系统在高里德堡占据数态和低里德堡占据数态之间的切换.这一结果为将来进一步研究里德堡自旋晶格中的多体动力学提供了新思路.  相似文献   

12.
13.
基于腔QED的多用户间的多原子量子信道的建立   总被引:3,自引:0,他引:3       下载免费PDF全文
赵晗  周小清  杨小琳 《物理学报》2009,58(9):5970-5977
提出基于腔QED技术的多用户间的多原子W态和GHZ态量子信道的建立方案.在量子网络的空闲时段,各个用户和量子交换机共享EPR对.量子交换机通过原子和腔场的相互作用将两个EPR对制备成W态,再与另一个EPR对进行纠缠交换,经过直接测量后为用户建立三原子W态量子信道;同时讨论了四用户间的W态量子信道的建立方案.量子交换机对三个EPR对进行纠缠交换,将三个原子同时与腔场作用,经过直接测量后为用户建立三原子GHZ态量子信道;并将此方法推广到N个用户间的GHZ态量子信道的建立. 关键词: 腔QED 量子信道 量子交换机 纠缠交换  相似文献   

14.
15.
We present an optical "enantio-selective switch" that, in two steps, turns a ("racemic") mixture of left-handed and right-handed chiral molecules into the enantiomerically pure state of interest. The optical switch is composed of an "enantio-discriminator" and an "enantio-converter" acting in tandem. The method is robust, insensitive to decay processes, and does not require molecular preorientation. We demonstrate the method on the purification of a racemate of (transiently chiral) D2S2 molecules, performed on the nanosecond time scale.  相似文献   

16.
利用多光子相互作用实现量子信息传递   总被引:2,自引:1,他引:2  
王菊霞  杨志勇  安毓英 《光学学报》2007,27(8):1508-1512
利用全量子理论,研究了多原子-腔场系统中多光子相互作用的过程,给出了不同情况下系统的一般演化式,发现利用此过程可实现量子纠缠信息的传递:只要控制腔场与原子相互作用的时间即原子以特定速度通过腔场时,处于基态的原子与存储纠缠信息的腔场相互作用的结果使原子获得量子纠缠信息;相反,纠缠原子中的量子纠缠信息也可传递给处于真空态的腔场;基态原子作为"飞行的量子比特"还可将量子纠缠信息从一个腔场传递到另一个腔场。该结论适应于讨论任意多个原子-腔场系统中任意多个光子相互作用的普遍情形。  相似文献   

17.
From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.  相似文献   

18.
Anisimov  A. N.  Babunts  R. A.  Breev  I. D.  Soltamov  V. A.  Mokhov  E. N.  Baranov  P. G. 《JETP Letters》2020,112(12):774-779
JETP Letters - A family of atomic-scale color centers, the spin state of which can be controlled via optical and microwave channels, has been found in the rhombic polytype of silicon carbide...  相似文献   

19.
We analyze the optical selection rules of the microwave-assisted transitions in a flux qubit superconducting quantum circuit (SQC). We show that the parities of the states relevant to the superconducting phase in the SQC are well defined when the external magnetic flux phi(e) = phi(0)/2; then the selection rules are the same as the ones for the electric-dipole transitions in usual atoms. When phi(e) does not = phi(0)/2, the symmetry of the potential of the artificial "atom" is broken, a so-called delta-type "cyclic" three-level atom is formed, where one- and two-photon processes can coexist. We study how the population of these three states can be selectively transferred by adiabatically controlling the electromagnetic field pulses. Different from lambda-type atoms, the adiabatic population transfer in our three-level delta atom can be controlled not only by the amplitudes but also by the phases of the pluses.  相似文献   

20.
We present a variable temperature scanning tunneling microscopy and spectroscopy study of the Si(553)-Au atomic chain reconstruction. This quasi-one-dimensional system undergoes at least two charge density wave (CDW) transitions, which can be attributed to electronic instabilities in the fractionally filled 1D bands of the high-symmetry phase. Upon cooling, Si(553)-Au first undergoes a single-band Peierls distortion, resulting in period doubling along the chains. This Peierls state is ultimately overcome by a competing x3 CDW, which is accompanied by a x2 periodicity in between the chains. These locked-in periodicities indicate small charge transfer between the nearly 1/2-filled and 1/4-filled bands. The presence and the mobility of atomic-scale dislocations in the x3 CDW state indicates the possibility of manipulating phase solitons carrying a (spin, charge) of (1/2, +/- e/3) or (0, +/-2e/3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号