首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the dynamic evolution of quantum correlation of two interacting coupled qubits system in non-Markov environment, and quantify the quantum correlation using concurrence and quantum discord. We find that although both of them are physical quantities which measure the system characteristics of the quantum correlations, the quantum discord is more robust than concurrence, since it can keep a positive value even when the ESD happens. The quantum correlation of quantum system not only depends on the initial state but also strongly depends on the coupling ways between qubits and environment. For the given initial state, by keeping the coupling between qubits and environment in completely symmetric, we can completely avoid the effect the decoherence influenced on the quantum correlation and effectively prolong the survival time of quantum discord and concurrence. We also find that the stronger the interaction between qubits is, the more conducive the death of the quantum correlation is resisted.  相似文献   

2.
3.
We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics.  相似文献   

4.
Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using two- photonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.  相似文献   

5.
Quantum image processing has developed rapidly in recent years. In this paper, we propose a framework of quantum image filtering in the spatial domain. We proved that a high quantum parallel method to correlate the image and the filter mask can be achieved, even though the quantum correlation of two sequences is physically impossible. In order to avoid this impossible, we use quantum addition operation instead of quantum multiplication. We provide the quantum circuit that can realize the filtering task and present several simulation results on grayscale images. The main advantage of the quantum version lies in the efficient correlation between the quantum image and the filter mask.  相似文献   

6.
龙桂鲁 《物理》2006,35(5):388-389
在清华大学物理系成立60周年之际,我们对近年来清华大学物理系量子信息研究的主要进展情况作一介绍,包括量子搜索算法研究,核磁共振量子计算的实验研究,量子通讯的理论与实验研究.在量子搜索算法研究方面,我们提出了量子搜索算法的相位匹配,纠正了当时的一种错误观点,并且提出了一种成功率为100%的量子搜索算法,改进了Grover算法;在核磁共振量子计算实验方面,我们实现了2到7个量子比特的多种量子算法的实验演示;在量子通讯方面,我们提出了分布式传输的量子通讯的思想,应用于量子密钥分配、量子秘密共享、量子直接安全通讯等方面,构造了多个量子通讯的理论方案.在实验室,我们实现了2米距离的空间量子密码通讯的演示实验.  相似文献   

7.
We study the quantum corrections to the oblique propagation of the magnetosonic waves in a warm quantum magnetoplasma composed by mobile ions and electrons. We use a fluid formalism to include quantum corrections due to the Bohm potential and to the spin magnetization energy of electrons. The effects of both quantum corrections are shown in the dispersion relation for perpendicular, parallel and oblique propagation. We find that the quantum contributions to the low frequency depend on the type in the oblique propagation with respect to the background magnetic field. The relevance in astrophysical scenarios is exemplified.  相似文献   

8.
The compatibility of the notion of empty wave with quantum mechanics is investigated. Invoking general physical requirements valid in quantum mechanics it is shown that a picture of a quantum system in terms of an empty wave and a non-empty wave containing a quantum particle is deficient. Research associate N.F.W.O. (Belgium).  相似文献   

9.
Quantum correlations among parts of a composite quantum system are a fundamental resource for several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, we investigate the quantum discord of the two-qubit system constructed from the Yang-Baxter Equation. The density matrix of this system is generated through the unitary Yang-Baxter matrix R. The analytical expression and numerical result of quantum discord and geometric measure of quantum discord are obtained for the Yang-Baxter system. These results show that quantum discord and geometric measure of quantum discord are only connect with the parameter θ, which is the important spectral parameter in Yang Baxter equation.  相似文献   

10.
11.
A classical one-time pad allows two parties to send private messages over a public classical channel-an eavesdropper who intercepts the communication learns nothing about the message. A quantum one-time pad is a shared quantum state which allows two parties to send private messages or private quantum states over a public quantum channel. If the eavesdropper intercepts the quantum communication she learns nothing about the message. In the classical case, a one-time pad can be created using shared and partially private correlations. Here we consider the quantum case in the presence of an eavesdropper, and find the single-letter formula for the rate at which the two parties can send messages using a general quantum state as a quantum one-time pad. Surprisingly, the formula coincides with the distillable entanglement assisted by a symmetric channel, an important quantity in quantum information theory, but which lacked a clear operational meaning.  相似文献   

12.
聂敏  唐守荣  杨光  张美玲  裴昌幸 《物理学报》2017,66(7):70302-070302
电离层偶发E层是指在距离地面高度80—150 km之间,在风剪切作用下,电子密度急剧增加的不规则电离薄层,它会对量子卫星光信号的传输造成极大的影响.然而,有关电离层偶发E层与星地间量子通信信道参数关系的研究,迄今尚未展开.为了研究偶发E层对量子卫星通信性能的影响,首先分析了它的形成过程,得出自由电子密度随高度变化的关系;然后建立了自由电子密度、偶发E层的厚度对量子卫星链路衰减的模型;针对振幅阻尼信道,给出自由电子密度对信道容量、纠缠保真度、误码率和安全密钥产生率的定量关系.理论分析和仿真结果表明,当偶发E层的厚度为1 km、电子密度由3×10~5cm~(-1)增加到27×10~5cm~(-1)时,信道容量由0.8304衰减到0.1319,纠缠保真度由0.9386下降到0.3606,量子误码率由0.0093增加到0.0769,安全密钥产生率由9.968×10~(-5)减小到1.91×10~(-6).由此可见,电子密度的大小和偶发E层的厚度对量子卫星通信性能有显著的影响.因此,在进行量子卫星通信时,应根据对电离层参数的探测情况,自适应调整卫星系统的各项指标,以确保量子通信的可靠性.  相似文献   

13.
14.
A quantum algorithm is presented for modeling the time evolution of a continuous field governed by the nonlinear Burgers equation in one spatial dimension. It is a microscopic-scale algorithm for a type-II quantum computer, a large lattice of small quantum computers interconnected in nearest neighbor fashion by classical communication channels. A formula for quantum state preparation is presented. The unitary evolution is governed by a conservative quantum gate applied to each node of the lattice independently. Following each quantum gate operation, ensemble measurements over independent microscopic realizations are made resulting in a finite-difference Boltzmann equation at the mesoscopic scale. The measured values are then used to re-prepare the quantum state and one time step is completed. The procedure of state preparation, quantum gate application, and ensemble measurement is continued ad infinitum. The Burgers equation is derived as an effective field theory governing the behavior of the quantum computer at its macroscopic scale where both the lattice cell size and the time step interval become infinitesimal. A numerical simulation of shock formation is carried out and agrees with the exact analytical solution.  相似文献   

15.
We investigate the quantum dynamics of a periodically kicked nonlinear spin system which exhibits regular and chaotic dynamics in the classical regime. The quantum behaviour is characterised by the evolving eigenvalue distributions for the angular momentum components and the features, including recurrences in the quantum means and the presence of quantum tunneling, are discussed. We employ the evolution operator eigenvalue distribution to prove that coherent quantum tunneling occurs between the fixed points in the regular regions of phase space. Continual quantum measurement is included in the model: the classical dynamics are unchanged but a destruction of coherences occurs in the quantum system. Recurrences in the means are destroyed and quantum tunneling is suppressed by measurement, a manifestation of the quantum Zeno effect.  相似文献   

16.
量子混沌系统中的自旋压缩性质   总被引:1,自引:1,他引:0       下载免费PDF全文
宋立军  严冬  李永大 《发光学报》2007,28(3):336-340
量子信息是21世纪的一门新兴交叉学科,现已经成为世界关注的热门研究领域.近年来,量子计算机的研究正成为大家十分感兴趣的课题.在寻找量子计算的实现方案过程中,量子混沌引起了研究人员的极大关注,因为在量子计算机执行一些量子运算法则的过程中可能产生量子混沌,并可能破坏量子计算机的运算操作条件.近期有关量子纠缠与量子混沌之间的关系已经有所报道,而自旋压缩作为另外一种典型的纯量子效应,是否也与量子混沌之间存在一定关系呢?讨论了量子混沌研究中一个非常典型的QKT模型,研究了量子混沌系统中自旋压缩的性质.通过数值模拟计算,给出了两种不同定义的自旋压缩系数与混沌系数κ之间的变化关系,结果发现在经典相空间中,如果在规则区域占优势的情况下,当初始自旋相干态波包位于椭圆形中心时,随着时间的演化,系统压缩行为表现得非常强;而对于经典相空间中混沌区域占优势的情况下,初始自旋相干态波包同样位于椭圆形中心,则系统的压缩行为表现得非常弱,说明自旋压缩对相应的经典混沌非常敏感.通过比较还发现,采用Wineland等定义的自旋压缩系数比采用Kitagawa和Ueda等定义的自旋压缩系数对经典混沌更敏感一些,从而得出用自旋压缩可以刻画量子混沌的结论.  相似文献   

17.
The magnon energy spectra, the sublayer magnetization and the quantum fluctuations in a ferrimagnetic superlattice consisting of four different magnetic sublayers are studied by employing the linear spin-wave approach and Green's function technique. The effects of the interlayer exchange couplings and the spin quantum numbers on the sublayer magnetization and the quantum fluctuations of the systems are discussed for three different spin configurations. The roles of quantum competitions among the interlayer exchange couplings and the symmetry of the different spin configurations have been understood. The magnetizations of some sublayers increase monotonously, while those of others can exhibit their maximum, and the quantum fluctuations of the whole superlattice system can show a minimum when one of the antiferromagnetic interlayer exchange couplings increases. This is due to the quantum competition/transmission of effects of the interlayer exchange couplings. When the spin quantum number of sublayers varies, the system goes through from a quantum region of small spin numbers to a classical region of large spin numbers. The quantum fluctuations of the system exhibit a maximum as a function of the spin quantum number of a sublayer, which is related with higher symmetry of the system. It belongs to the type III Shubnikov group of magnetic groups. This magnetically structural symmetry consists of not only the symmetry of space group, but also the symmetry of the direction and strength of spins.  相似文献   

18.
We analyze the dynamics of the kicked top in a deeply quantum regime. Signatures of classical chaos in the quantum dynamics that can be identified from a semiclassical treatment persist in a deeply quantum regime. Structures in the classical-phase space can also be identified in the tunneling dynamics of the quantum system. Our results show that quantum chaos is observable in the regime that is accessible to future experiments with trapped ions or cold atoms.  相似文献   

19.
It is shown that if a metric in quantum gravity can be decomposed as a sum of classical and quantum parts, then Einstein quantum gravity looks approximately like modified gravity with a nonminimal interaction between gravity and matter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号