首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional magnetic field and magneto-elastic stress solutions are presented for a magnetic material of a thin infinite plate with an elliptical hole under uniform magnetic field. The linear constitutive equation is used for the magnetic field and the stress analyses. The magneto-elastic stress is analyzed using Maxwell stress since only Maxwell stress is caused as a body force according to the electro magneto theory. Except the approximation of the plane stress state in which the plate is thin, no further assumption is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress is completely satisfied without any linear assumptions on the boundary. First, magnetic field and stress for soft ferromagnetic material is analyzed and then those for paramagnetic and diamagnetic materials are analyzed. It is stated that the stress components are the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields are different each other in the plates. If the analysis of magnetic field of paramagnetic materials is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material. Shear deflection as well as stress in the direction of the plate thickness arises and the solutions are also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived.  相似文献   

2.
A general theory of finite deformation of soft ferromagnetic elastic solids is formulated following the linear theory developed earlier by Pao and Yeh. The constitutive equations, field equations, and the boundary conditions of this theory are applied to analyse the buckling of a plate under the action of a uniform magnetic field. A nontrivial equilibrium configuration for the deformed plate is shown to exist, and the critical value of the externally applied magnetic induction at which the plate buckles is determined. It is demonstrated that the non-linear deformation affects the critical magnetic induction considerably.  相似文献   

3.
Two dimensional solutions of the magnetic field and magneto elastic stress are presented for a magnetic material of a thin infinite plate containing an elliptical hole with an edge crack subjected to uniform magnetic field. Using a rational mapping function, each solution is obtained as a closed form. The linear constitutive equation is used for these analyses. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate. In the present paper, it raises a plane stress state for a thin plate, the deformation of the plate thickness and the shear deflection. Therefore the magneto elastic stress is analyzed using Maxwell stress. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress components is completely satisfied without any linear assumptions on the boundary. First, magnetic field and stress analyses for soft ferromagnetic material are carried out and then those analyses for paramagnetic and diamagnetic materials are carried out. It is stated that those plane stress components are expressed by the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields Hx, Hy are different each other in the plates. If the analysis of magnetic field of paramagnetic material is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material to analyze the stress field, and the results may be applied for a soft ferromagnetic material. It is stated that the stress state for the magnetic field Hx, Hy is the same as the pure shear stress state. Solutions of the magneto elastic stress are nonlinear for the direction of uniform magnetic field. Stresses in the direction of the plate thickness and shear deflection are caused and the solutions are also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived and investigated for the crack length.  相似文献   

4.
This paper studies the two dimensional flow of an electrically conducting fluid which is an optically thin gray gas past a stationary vertical infinite plate in the presence of radiation. It is assumed that the temperature of the plate and the suction at the plate are constant. The presence of the induced magnetic field is also taken into account. Numerical solutions for the velocity and the induced magnetic field are derived and the effects of the radiation parameter are discussed.  相似文献   

5.
Two-dimensional solutions of the electric current, magnetic field and magneto elastic stress are presented for a magnetic material of a thin infinite plate containing an elliptical hole with an edge crack under uniform electric current. Using a rational mapping function, the each solution is obtained as a closed form. The linear constitutive equation is used for the magnetic field and the stress analyses. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate which raises a plane stress state for a thin plate and the deformation of the plate thickness. Therefore the magneto elastic stress is analyzed using Maxwell stress. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress components is completely satisfied without any linear assumptions on the boundary. First, electric current, magnetic field and stress analyses for soft ferromagnetic material are carried out and then those analyses for paramagnetic and diamagnetic materials are carried out. It is stated that the stress components are expressed by the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields Hx, Hy are different each other in the plates. If the analysis of magnetic field of paramagnetic material is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material to analyze the stress field, and the results may be applied for a soft ferromagnetic material. It is stated that the stress state for the magnetic field Hx, Hy is the same as the pure shear stress state. Solving the present magneto elastic stress problem, dislocation and rotation terms appear, which makes the present problem complicate. Solutions of the magneto elastic stress are nonlinear for the direction of electric current. Stresses in the direction of the plate thickness are caused and the solution is also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived and investigated for the crack length and the electric current direction.  相似文献   

6.
Summary An analysis is made for the laminar free convection and heat transfer of a viscous electrically conducting fluid from a hot vertical plate in the case when the induced field is negligible compared to the imposed magnetic field. It is found that similar solutions for velocity and temperature exist when the imposed magnetic field (acting perpendicular to the plate) varies inversely as the fourth root of the distance from the lowest end of the plate. Explicit expressions for velocity, temperature, boundary layer thickness and Nusselt number are obtained and the effect of a magnetic field on them is studied. It is found that the effect of the magnetic field is to decrease the rate of heat transfer from the wall. In the second part, the method of characteristics is employed to obtain solutions of the time-dependent hydromagnetic free convection equations (hyperbolic) of momentum and energy put into integral form. The results yield the time required for the steady flow to be established, and the effect of the magnetic field on this time is studied.  相似文献   

7.
A new approach on MHD natural convection boundary layer flow from a finite flat plate of arbitrary inclination in a rotating environment, is presented. This problem plays a significant role on boundary layer flow control. It is shown that taking into account the pressure rise region at the leading edge of the plate leads to avoid separation and the back flow is reduced by the strong magnetic field. It is also shown that the frictional drag at the leading edge of the plate is reduced when the inclination angle α=π/4. In the case of isothermal flat plate, the bulk temperature becomes identical for any value of Gr (Grashof number) when the value of M 2 (Hartmann number) and K 2 (rotation parameter) are kept fixed.  相似文献   

8.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

9.
In this paper, an analysis is made on the unsteady flow of an incompressible electrically conducting viscous fluid bounded by an infinite porous flat plate. The plate executes harmonic oscillations at a frequency n in its own plane. A uniform magnetic field Ho is imposed perpendicular to the direction of the flow. It is found that the solution also exists for blowing at the plate. The temperature distribution is also obtained by taking viscous and Joule dissipation into account. The mean wall temperature θo(O) decreases with the increase in the Hall parameter m. It is found that no temperature distribution exists for the blowing at the plate.  相似文献   

10.
Summary This paper describes the effect of a magnetic field upon the viscous lifting of a conducting fluid for two types of lifting surfaces; conducting and non-conducting. It is shown that the magnetic field produces very small effects on the film thickness and mass flow rate for the case of the dielectric plate. For the conducting plate, the effects are more pronounced and increase with larger values of the ratio of plate conductivity to fluid conductivity. The analysis employed here is simplified to the extent that the effects of surface tension are not included.  相似文献   

11.
In this paper,the basic equations governing the flow and heat transfer of an incompressible viscous and electrically conducting fluid past a semi-infinite vertical permeable plate in the form of partial differential equations are reduced to a set of non-linear ordinary differential equations by applying a suitable similarity transformation.Approximate solutions of the transformed equations are obtained by employing the perturbation method for two cases,i.e.,small and large values of the suction parameter.From the numerical evaluations of the solution,it can be seen that the velocity field at any point decreases as the values of the magnetic and suction parameters increase.The effect of the magnetic parameter is to increase the thermal boundary layer.It is also found that the velocity and temperature fields decrease with the increase in the sink parameter.  相似文献   

12.
Two-dimensional magnetic field and stress analyses have been presented for soft ferromagnetic, paramagnetic, and diamagnetic materials of an infinite thin plate with an elliptical hole under steady electric current. The magnetic stress has been analyzed in the Maxwell Stress Model. Except for the approximation of the plane stress state since the plate is the thin plate, any assumption is not made for the stress analysis, though the Maxwell stress components are expressed by nonlinear terms. The boundary condition expressed by Maxwell’s stress is completely satisfied without any linear assumptions on the boundary. Two ways for the boundary condition are stated. The analysis of σ z in the direction of the plate thickness is also carried out. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived, and the magnitude of the stress intensity factor for the magnetic stress and thermal stress due to the Joule heat caused by the electric current is discussed.  相似文献   

13.
An analysis is performed to study the magnetohydrodynamic flow of an electrically conducting, viscous incompressible fluid past a semi-infinite vertical plate with variable surface temperature under the action of transversely applied magnetic field. The heat due to viscous dissipation and the induced magnetic field are assumed to be negligible. The dimensionless governing equations are unsteady, two-dimensional, coupled and non-linear governing equations. It is found that the magnetic field parameter has a retarding effect on the velocities of air and water.  相似文献   

14.
A theoretical investigation of the effects of a transverse magnetic field on the combined problem of viscous lifting and drainage of a conducting fluid on a plate is presented. The effects of inertia and transverse magnetic field on the liquid film thickness is studied for two cases namely a plate withdrawn with a constant velocity and one withdrawn with a constant acceleration. The expressions for the flow rate and the free surface profiles are obtained for the above two cases. It is found that the free surface profiles are convex in nature as in the non-magnetic case thus showing that the inertia does not effect the general pattern of flow, and the effect of the magnetic field is to retard both the lifting and drainage of the fluid.  相似文献   

15.
The governing non-linear high-order, sixth-order in space and third-order in time, differential equation is constructed for the unsteady flow of an incompressible conducting fourth-grade fluid in a semi-infinite domain. The unsteady flow is induced by a periodically oscillating two-dimensional infinite porous plate with suction/blowing, located in a uniform magnetic field. It is shown that by augmenting additional boundary conditions at infinity based on asymptotic structures and transforming the semi-infinite physical space to a bounded computational domain by means of a coordinate transformation, it is possible to obtain numerical solutions of the non-linear magnetohydrodynamic equation. In particular, due to the unsymmetry of the boundary conditions, in numerical simulations non-central difference schemes are constructed and employed to approximate the emerging higher-order spatial derivatives. Effects of material parameters, uniform suction or blowing past the porous plate, exerted magnetic field and oscillation frequency of the plate on the time-dependent flow, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviour of the fourth-grade non-Newtonian fluid is also compared with those of the Newtonian fluid.  相似文献   

16.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field.It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field.The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF).The parabolic equations obtained from FVF are numer...  相似文献   

17.
The unsteady stagnation-point flow of a viscous fluid impinging on an infinite plate in the presence of a transverse magnetic field is examined and solutions are obtained. It is assumed that the infinite plate at y=0 is making harmonic oscillations in its own plane. A finite difference technique is employed and solutions for small and large frequencies of the oscillations are obtained for various values of the Hartmann's number.  相似文献   

18.
An initial value investigation is made of the motion of an incompressible, viscous conducting fluid with embedded small spherical particles bounded by an infinite rigid non-conducting plate. Both the plate and the fluid are in a state of solid body rotation with constant angular velocity about an axis normal to the plate. The flow is generated in the fluid-particle system due to non-torsional oscillations of a given frequency superimposed on the plate in the presence of a transverse magnetic field. The operational method is used to derive exact solutions for the fluid and the particle velocities, and the wall shear stress. The small and the large time behaviour of the solutions is discussed in some detail. The ultimate steady-state solutions and the structure of the associated boundary layers are determined with physical implications. It is shown that rotation and magnetic field affect the motion of the fluid relatively earlier than that of the particles when the time is small. The motion for large times is set up through inertial oscillations of frequency equal to twice the angular velocity of rotation. The ultimate boundary layers are established through inertial oscillations. The shear stress at the plate is calculated for all values of the frequency parameter. The small and large-time behaviour of the shear stress is discussed. The exact solutions for the velocity of fluid and the wall shear stress are evaluated numerically for the case of an impulsively moved plate. It is found that the drag and the lateral stress on the plate fluctuate during the non-equilibrium process of relaxation if the rotation is large. The present analysis is very general in the sense that many known results in various configurations are found to follow as special cases.  相似文献   

19.
基于广义变分原理得到的磁力计算公式,采用塑性增量理论,Mises屈服准则和有效的增量有限元计算方法,研究了线性强化材料铁磁矩形板的磁弹塑性弯曲行为。在文中定量模拟了铁磁简支矩形板在外加磁场作用下的挠度特征曲线,铁磁板发生塑性变形时的构型图和不同外加磁场下的中截面构型,以及铁磁板在卸载后的残余挠度特征曲线等力学特征,分析了塑性区域随磁场增加而扩展的情况。数值结果表明:当铁磁矩形板上的部分区域发生塑性屈服后,其变形明显大于相同磁场条件下铁磁板发生的弹性变形值;且随着外加磁场倾角的增大(0°<α≤45°),铁磁板进入塑性屈服状态的临界屈服磁场值减小;铁磁板的中截面构形为双半波型,其塑性区域由铁磁板两侧挠度最大的区域向板的中心区域扩展,板的中心最后进入塑性区域等。  相似文献   

20.
Consider the impingement of time harmonic flexural waves on a through crack in a soft ferromagnetic plate the surface of which is subjected to a uniform magnetic field at normal incidence. Mindlin's plate theory is used to account for the magneto-elastic interaction. For an incident wave that gives rise to moments symmetric about the crack plane, Fourier transforms are applied reducing the mixed boundary value problem to a Fredholm integral equation that can be solved numerically. The dynamic moment intensity factor versus frequency is computed to exhibit the influence of the magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号