首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bis­[(2-pyridyl­methyl)­ammonio]silver(I) trinitrate, [Ag(C6H9N2)2](NO3)3, (I), and bis{bis­[(4-pyridyl­methyl)­ammonio]silver(I)} hexakis­(perchlorate) dihydrate, [Ag(C6H9N2)2]2(ClO4)6·2H2O, (II), are rare examples of complexes with cationic ligands. In (I), the Ag+ cation has a T-shaped [2+1] coordination involving the pyridine N atoms and a nitrate O atom, while in (II) there are three independent two-coordinate Ag complex cations (two with the Ag atoms on independent inversion centres) and disordered ClO4 ions. The crystal structures reveal the role of hydrogen bonding in stabilizing these complexes.  相似文献   

2.
Studying the axial ligation behavior of metalloporphyrins with nitrogenous bases helps to better understand not only the biological function of heme‐based protein systems, but also the catalytic properties of porphyrin‐based reaction sites in other biomimetic synthetic support environments. Unlike iron porphyrin complexes, little is known about the axial ligation behavior of Mn porphyrins, particularly in the solid state with Mn in the +3 oxidation state. Here, we present the syntheses and crystal and molecular structures of three new high‐spin manganese(III) porphyrin complexes with the different amine‐based axial ligands imidazole (im), piperidine (pip), and 1,4‐diazabicyclo[2.2.2]octane (DABCO), namely bis(imidazole)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride chloroform disolvate, [Mn(C44H28N4)(C3H4N2)2]Cl·2CHCl3 or [Mn(TPP)(im)2]Cl·2CHCl3 (TPP = 5,10,15,20‐tetraphenylporphyrin), (I), bis(piperidine)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride, [Mn(C44H28N4)(C5H11N)2]Cl or [Mn(TPP)(pip)2]Cl, (II), and chlorido(1,4‐diazabicyclo[2.2.2]octane)(5,10,15,20‐tetraphenylporphyrin)manganese(III)–1,4‐diazabicyclo[2.2.2]octane–toluene–water (4/4/4/1), [Mn(C44H28N4)Cl(C6H12N2)]·C6H12N2·C7H8·0.25H2O or [Mn(TPP)Cl(DABCO)]·(DABCO)·(toluene)·0.25H2O, (IV). A fourth complex, chlorido(pyridine)(5,10,15,20‐tetraphenylporphryinato)manganese(III) pyridine disolvate, [Mn(C44H28N4)Cl(C5H5N)]·2C5H5N or [Mn(TPP)Cl(py)]·2(py), (III), acquired using different crystallization methods from published data, is also reported and compared to the previous structures.  相似文献   

3.
SKα, SKβ, ClKβ, ClKβ, and PdLβ2 X-ray fluorescent and PdK EXAFS spectra were obtained for some organic solutions of dialkyl sulfide complexes with palladium chloride. Solvent effects on the electronic and spatial structure of complexes in solution are discussed. In the benzene solution of [PdCl22(C6H13)2S], complex molecules interact with solvent molecules along a coordinate that is perpendicular to the plane of the complex molecule. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurmal Strukturnoi Khimii, Vol. 35, No. 4, pp. 105c111, July–August, 1994. Translated by L. Smolina  相似文献   

4.
The thermal properties of four heteropoly complexes α-K3H3[SiW11Ni(H2O)O39]·11.5H2O (I), α-K3H2[SiW11Fe(H2O)O39]·9H2O (II), α-[(C4H9)4N]3.5H1.5[SiW11Fe(H2O)O39]·4.5H2O (III) and α-[(C4H9)4N]3.5H2.5[SiW11Cu(H2O)O39]·6H2O (IV) were studied by means of TG, DTA and DSC. The activation energy and reaction order of the thermal decomposition reaction of these complexes have been calculated.
Zusammenfassung Mittels TG, DTA und DSC wurden die thermischen Eigenschaften der vier heteropolaren Komplexe α-K3H3[SiW11Ni(H2O)O39]·11.5H2O (I), α-K3H2[SiW11Fe(H2O)O39]·9H2O (II), α-[(C4H9)4N]3.5H1,5[SiW11Fe(H2O)O39]·4.5H2O (III) und α-[(C4H9)4N]3.5H2,5 [SiW11Cu(H2O)O39]·6H2O (IV) untersucht. Die Aktivierungsenergie und Reaktionsordnung der thermischen Zersetzungsreaktion dieser Komplexe wurde berechnet.
  相似文献   

5.
A number of halogen complexes of Pd, Pt and Rh with 1,5-hexadiene have been synthesized;three of them, C6H10PdBr2, C6H10PtBr2 and (C6H10RhCl)2, for the first time. An intermediate while preparing C6H10PdCl2 was the polynuclear polymeric moiety [C6H10(PdCl2)4]n· IR, Raman and ESCA spectroscopy show that the diallylic ligand in all the complexes has the cis-configuration and that the strength of the metaldiallyl bond increases in the series Pd < Pt < Rh.  相似文献   

6.
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine ( L ), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, ( I ), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, ( II ), bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, ( III ), and catena‐poly[[[diiodidozinc(II)]‐μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, ( IV ), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex ( I ) is isomorphic with complex ( III ) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex ( II ) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I? anion and guest CHCl3 molecule, complex ( IV ) displays a significantly different structure with respect to complexes ( I )–( III ). C—H…Cl and C—H…N hydrogen bonds, and π–π stacking or C—Cl…π interactions exist in complexes ( I )–( IV ), and these weak interactions play an important role in the three‐dimensional structures of ( I )–( IV ) in the solid state. In addition, the fluorescence properties of L and complexes ( I )–( IV ) were investigated.  相似文献   

7.
The structures of [RhCl(CO) ( 1 )] and [PdCl2 ( 1 )], where 1 is the bidentate ligand (C6H5)2P·CH2·C18H10· CH2·P(C6H5)2, have been determined from threedimensional X-ray counter data collected on single crystals of the C6H5·CN solvates. The two compounds are isomorphous and crystallize in the triclinic system, space group P 1 , Z = 2: a = 14.580 (8), b = 13.029 (10), c = 11.909 (6) Å, α = 106.33 (5), β = 100.47 (4), γ = 95.73 (5)° for the rhodium complex; a = 14.361 (5), b = 13.044 (7), c = 11.897 (4) Å, α = 105.97 (4), β = 100.27 (3), γ = 94.76 (4)°, for the palladium complex. In both complexes the metal atom is four-coordinate with slightly distorted square-planar configuration. In both cases the ligand 1 spans trans positions with M-P bond lengths in the ranges of the literature data. Also the other bond distances fall in regular ranges. Ligand 1 has almost the same conformation in both complexes and is characterized by a strong out-of-plane deformation of the benzophenanthrene system as a consequence of severe overcrowding.  相似文献   

8.
Cyclic Esters of Trivalent Arsenic and Antimony 2,2′-Dihydroxybiphenyl, 2,2′-dihydroxybinaphthyl, and o-mercapto-phenol react with AsCI3 and SbCI3 giving the chelate complexes (C12H8O2)MCI, (C20H12O2)MCI (M = As, Sb), and (C6H4OS)AsCl. By interaction of pyrocatechol, 2,2′-di- hydroxybiphenyl. and 2,2′-dihydroxybinaphthyl with AsCl, in presence of amines the complexes amin · H[As(C5H4O2)2], amin · H[As(C12H8O2)2], and amin · H[As(C20H12O2)2] are obtained.  相似文献   

9.
Some palladium(II) halide complexes with 2,5-dimethyl- (DTZ), 2-amino- (ATZ), 2-amino-5-methyl- (MATZ), 2-ethylamino- (EATZ) and 2-mercapto-5-methyl-1,3,4-thiadiazole (MTTZ) have been prepared and studied: PdX2 · 2L (L = DTZ, ATZ, MATZ : X = Cl, Br, I; L = EATZ: X = Br, I; L = MTTZ: X = I), PdCl2 · 2.5EATZ, PdCl2 · 3MTTZ, PdBr2 · 1.5MTTZ and PdX2 · L (L = DTZ, ATZ, MATZ, EATZ: X = Cl, Br; L = MTTZ: X = Cl(H2O), Br). In the PdX2 · 2L, PdCl2 · 2.5EATZ and PdCl2 · 3MTTZ complexes the palladium ions are cis-(2X, 2L)-coordinated, the coordination sites being Nring for DTZ, NR2 for ATZ, MATZ, EATZ and C = S for MTTZ. PdBr2 · 1.5MTTZ may be formulated as cis[PdBr2-2L] · [PdBr2 · L]. In the PdX2 · L complexes the ligand very likely acts as bidentate by using a ring-nitrogen atom as the second coordination site.  相似文献   

10.
Contributions to Organolanthanide Chemistry. II. Cyclopentadienyllanthanide 1,3-Butadiene Complexes – Synthesis, Properties, and Reactions From cyclopentadienyllanthanide dihalides and “magnesium butadiene” Cp*La(C4H6) · MgI2 · 3 THF ( I ), Cp*Ce(C4H6) · MgBr2 · 2 THF ( II ), Cp*Nd(C4H6) · MgCl2 · 2 THF ( III ), (1,3-(t-C4H9)2C5H3)Nd(C4H6) · MgCl2 · 2 THF ( IV ), CpEr(C4H6) · MgCl2 · 2 THF ( V ) and (1,3-(t-C4H9)2C5H3)Lu(C4H6) · MgCl2 · 2 THF ( VI ) were obtained as highly air sensitive complexes which react easily with proton active compounds and molecules with multible bonds. The reaction products with diphenylamine and carbon dioxide Cp*Nd(NPh2)2 · NHPh2 ( VII ) and Cp*Ce(O2CC4H6CO2) ( VIII ) are discribed. I–VIII were characterized by elementary analysis, i.r., 1H and 13C n.m.r., and EI-MS spectra.  相似文献   

11.
The preparation of uncharged complexes with metal amide bonds of type [MeN4]±0 (Me = Zn2+, Cr2+ is reported. These compounds are obtained by the interaction between Zn(C6H5)2 or Cr(C6H5)3 · 3 THF and 2-[β-(phenyl-amino)-ethyl]-pyridine (I). The same complexes are formed by the reaction between ZnCl2 · 2 THF, CrBr2 · 2 THF, or CrCl3 · 3 THF and the lithium amide (II), which is prepared from (I) and phenyl lithium. The structure of the chromium(II) complex is discussed on the basis of magnetic and visible absorption measurements.  相似文献   

12.
Radical salts and charge‐transfer complexes (CTCs) containing tetracyanoquinodimethane (TCNQ) display electrical conductivity, which has led to the development of many TCNQ derivatives with enhanced electron‐accepting properties that are applicable toward organic electronics. To expand the family of TCNQ derivatives, we report the synthesis and structures of 11,11,12,12‐tetracyano‐2,6‐diiodo‐9,10‐anthraquinodimethane (abbreviated as DITCAQ), C20H6I2N4, and its charge‐transfer complexes with various electron donors, namely DITCAQ–anthracene (2/1), C20H6I2N4·0.5C14H10, (I), DITCAQ–pyrene (2/1), C20H6I2N4·0.5C16H10, (II), and DITCAQ–tetrathiafulvalene (2/1), C20H6I2N4·0.5C6H4S4, (III). The molecular structure of DITCAQ consists of a 2,6‐diiodo‐9,10‐dihydroanthracene moiety with two malononitrile substituents. DITCAQ possesses a saddle shape, since the malononitrile groups bend significantly up out of the plane of the central ring and the two benzene rings bend down out of the same plane. π–π interactions between DITCAQ and the electron‐donor molecules control the degree of charge transfer in cocrystals (I), (II), and (III), which is reflected in both the dihedral angles between the terminal benzene ring and the central ring on the DITCAQ motifs, and their corresponding IR spectra.  相似文献   

13.
This study undertakes a theoretical investigation into uncommon hydrogen bonds between the ethyl cation (C2H5 +) and π hydrocarbons. Firstly, it considers the hyperconjugation effect of the ethyl cation, in which the non-localized hydrogen (H+) is taken to be a pseudoatom bound to the carbons of the methyl groups. The goal of the research is to use this electronic phenomenon to gain a better understanding of the (H+···π) and (H+···p-π) hydrogen bonds, which are considered uncommon because they are formed through the interaction of the H+ of the ethyl cation with the π bonds of the acetylene (C2H2) and ethene (C2H4), as well as with the pseudo-π bond of the cyclopropane (C3H6). In view of this, B3LYP/6-311++G(d,p) calculations were used to determine the geometries of the C2H5 +···C2H2, C2H5 +···C2H4, and C2H5 +···C3H6 hydrogen-bonded complexes. Deformations of the bond lengths and bond angles of these systems were analyzed geometrically. Examination of the stretch frequencies and absorption intensities of the (H+···π) and (H+···p-π) hydrogen bonds has revealed red-shifts in π and p-π bonds. After structural modeling and vibrational characterization, analysis of the charge transfer following the ChelpG approach and subsequently quantification of the hydrogen bond energies (basis sets superpostition error and zero point vibrational energies being considered) were used to predict the strength of the (H+···π) and (H+···p-π) hydrogen bonds. In addition, the molecular topography was estimated using the quantum theory of atoms in molecules (QTAIM). QTAIM was chosen because of a desire to understand the (H+···π) and (H+···p-π) hydrogen bonds chemically on the basis of the quantity of charge density and interpretation of Laplacian fields. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Double complexes [Pt(NH3)5Cl][Fe(C2O4)3] · 4H2O, [Pt(NH3)5Cl][Co(C2O4)3] · 2H2O, and [Pt(NH3)5Cl][Cr(C2O4)3] · 4H2O were synthesized and studied by single-crystal X-ray diffraction, X-ray phase analysis, differential thermal analysis, elemental analysis, and IR spectroscopy. The crystal structures of the compounds were examined from the viewpoint of the close packing of coordination polyhedra. The thermal properties of the synthesized complexes and K3[M(C2O4)3] salts (M = Fe, Co, Cr) were compared. A procedure for the synthesis of the FePt, CoPt, and CrPt intermetallic compounds through the thermolysis of the obtained complexes was developed. Original Russian Text ? K.V. Yusenko, D.B. Vasil’chenko, A.V. Zadesenets, I.A. Baidina, Yu.V. Shubin, S.V. Korenev, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 10, pp. 1589–1593.  相似文献   

15.
The compounds M(CO)5 · THF (M = Cr, Mo, W) react with sodium mercaptide, NaSR (R = C6F5, C6H5, C2H5), to give the mercapto-pentacarbonylmetallate anions [M(CO)5 · · SR]?. The preparation of some pentafluorophenylthio complexes, e. g. [(C6H5)3P]2MSC6F5(M = Cu, Ag, Au), [(C6H5)3P]2Hg(SC6F5)2, is reported.  相似文献   

16.
Syntheses and Properties of Pentafluoroethylcopper(I) and ‐copper(III) Compounds: CuC2F5 · D, [Cu(C2F5)2], and (C2F5)2CuSC(S)N(C2H5)2 The reactions of Cd(C2F5)2 · D and Zn(C2F5)2 · D (D = 2 CH3CN, 2 DMF), respectively, with copper(I) halides in the presence of halides quantitatively yield the CuC2F5 compounds CuC2F5 · D and [Cu(C2F5)2]. The CuC2F5 complexes are identified by NMR spectroscopy, while [Cu(C2F5)2] is isolated as PNP salt (PNP = (C6H5)3PNP(C6H5)3+). Both compounds are excellent C2F5 group transfer reagents, even at low temperature. Oxidation of [Cu(C2F5)2] with [(C2H5)2NC(S)S]2 yields the crystalline Cu(III) compound (C2F5)2CuSC(S)N(C2H5)2 (monoclinic, C2/c).  相似文献   

17.
Contributions to the Chemistry of Organo Transition Metal Compounds. 52. Preparation, Characterization, and Reactions of (C5H5)3Ce · THF and Na[Ce(C5H5)4] · THF (C5H5)3 · THF ( I ) was synthesized in a simple manner by reaction of (NH4)2[Ce(NO3)6] with C5H5Na. With excess C5H5Na the complex Na[Ce(C5H5)4] · THF ( II ) could be obtained. In addition of cyclovoltammetric and polarographic measurements it was tried without success to transfer I and II into organocerium( IV ) compounds by means of different oxidizing agents. II reacts with I2 and (C6H5)3CCl forming Na[(C5H5)3CeI] · THF or Na[(C5H5)2CeI2] · 4 THF and I besides of (C6H5)3CCl respectively. At interaction of I with Co(acac)3 the cobalticinium salt [(C5H5)2Co][C5H5Ce(acac)3] is formed. The compounds obtained were characterized by elementary analysis, hydrolysis products, magnetic moments, i.r., 1H-n.m.r. und u.v.-vis spectra, and measurements of electric conductivity.  相似文献   

18.
Three lanthanide-based complexes, {Gd2(H2O)10(CB[6])2}·CB[6]·6Cl·12H2O (1), {[Gd2(H2O)8CB[6]2]·(CuCl4)·4Cl·46H2O}n (2), and {Dy2(NO3)2(H2O)10(CB[6])}·4NO3·14H2O (3) (CB[6] = cucurbit[6]uril), were prepared with cucurbit[6]uril (CB[6]). These complexes were characterized by single-crystal X-ray diffraction, elemental analysis, FT-IR spectroscopy, UV–Vis spectroscopy, thermogravimetric analysis and magnetization measurements. Crystallographic results showed that 1 and 3 are dinuclear and crystallize in the triclinic space group Pī, whereas 2 is a 1-D zigzag supramolecular chain that crystallizes in the monoclinic system in C2/c. The results indicated that temperature has a big effect on the supramolecular assemblies and a different structure inducer also leads to the formation of different coordination polymers. Frequency dependence in the ac susceptibility signals was observed in 3.  相似文献   

19.
[(PPh3)3(PPh2)2Pd3Cl] Cl, benzene and aniline hydrochloride were isolated as products of the reactions of (PPh3)2PdCl2]2 or [(PPh3)PdCl2]2 with H2 in organic amines (Am). Similar products were obtained when (Ph3P)2Pd(Ph)Br was treated with H23 Both in amines and aromatic solvents. The reaction between H2 and [(PBu3)PdCl2]2 resulted in the formation of [(PBu3(PBu2)PdCl2 ·. 2 Am The kinetic data for H2 absorption by solutions of palladium(II) complexes are consistent with the heterolytic mechanism of cleavage fo hte HH bond in the coordination sphere of palladium(II); the function of the H+ acceptor being performed by the bases (e.g. Am or Ph). The reaction between the palladium complexes and H2 is autocatalytic. Reduction of the initial PdII complexes leads to lower oxidation state palladium complexes, which catalyse the reduction of PdII complexes. In the coordination sphere of the lower oxidation state palladium complexes, the oxidative addition of PR3 to Pd takes place with formation of compounds containing a Pd-R bond. It is the reaction between these complexes and H2 that yields palladium compounds with PR2 ligands.  相似文献   

20.
Bis{μ‐2‐[bis(pyridin‐2‐ylmethyl)amino]acetato}bis[diaquamanganese(II)] bis(trifluoromethanesulfonate) monohydrate, [Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2O, (I), and bis{μ‐3‐[bis(pyridin‐2‐ylmethyl)amino]propionato}bis[aquamanganese(II)] bis(trifluoromethanesulfonate) dihydrate, [Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2O, (II), form binuclear seven‐coordinate complexes. Oxidation of (II) with ammonium hexanitratocerate(IV), (NH4)2[Ce(NO3)6], gave the oxide‐bridged dimanganese(IV) complex di‐μ‐oxido‐bis(bis{3‐[bis(pyridin‐2‐ylmethyl)amino]propionato}manganese(IV)) bis[triaquatetranitratocerate(IV)], [Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2, (III). The manganese complexes in (II) and (III) sit on a site of symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号