首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

2.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

3.
The symmetrically dinuclear title compounds were isolated as diamagnetic [(bpy)2Ru(mu-H2L)Ru(bpy)2](ClO4)2 (1-(ClO4)2) and as paramagnetic [(acac)2Ru(mu-H2L)Ru(acac)2] (2) complexes (bpy=2,2'-bipyridine; acac- = acetylacetonate = 2,4-pentanedionato; H2L = 2,5-dioxido-1,4-benzoquinonediimine). The crystal structure of 22 H2O reveals an intricate hydrogen-bonding network: Two symmetry-related molecules 2 are closely connected through two NH(H2L2-)O(acac-) interactions, while the oxygen atoms of H2L2- of two such pairs are bridged by an (H2O)8 cluster at half-occupancy. The cluster consists of cyclic (H2O)6 arrangements with the remaining two exo-H2O molecules connecting two opposite sides of the cyclo-(H2O)6 cluster, and oxido oxygen atoms forming hydrogen bonds with the molecules of 2. Weak antiferromagnetic coupling of the two ruthenium(III) centers in 2 was established by using SQUID magnetometry and EPR spectroscopy. Geometry optimization by means of DFT calculations was carried out for 1(2+) and 2 in their singlet and triplet ground states, respectively. The nature of low-energy electronic transitions was explored by using time-dependent DFT methods. Five redox states were reversibly accessible for each of the complexes; all odd-electron intermediates exhibit comproportionation constants K(c)>10(8). UV-visible-NIR spectroelectrochemistry and EPR spectroscopy of the electrogenerated paramagnetic intermediates were used to ascertain the oxidation-state distribution. In general, the complexes 1n+ prefer the ruthenium(II) configuration with electron transfer occurring largely at the bridging ligand (mu-H2Ln-), as evident from radical-type EPR spectra for 13+ and (+. Higher metal oxidation states (iii, iv) appear to be favored by the complexes 2m; intense long-wavelength absorption bands and RuIII-type EPR signals suggest mixed-valent dimetal configurations of the paramagnetic intermediates 2+ and 2-.  相似文献   

4.
Structurally characterised 2,5-bis(2-hydroxyphenyl)pyrazine (H2L) can be partially or fully deprotonated to form the complexes [(acac)2Ru(mu-L)Ru(acac)2], [1], acac = acetylacetonato = 2,4-pentanedionato, [(pap)2Ru(mu-L)Ru(pap)2](ClO4)2, [2](ClO4)2, pap = 2-phenylazopyridine, or [(pap)2Ru(HL)](ClO4), [3](ClO4). Several reversible oxidation and reduction processes were observed in each case and were analysed with respect to oxidation state alternatives through EPR and UV-VIS-NIR spectroelectrochemistry. In relation to previously reported compounds with 2,2'-bipyridine as ancillary ligands the complex redox system [1]n is distinguished by a preference for metal-based electron transfer whereas the systems [2]n and [3]n favour an invariant Ru(II) state. Accordingly, the paramagnetic forms of [1]n, n = -, 0, +, exhibit metal-centred spin whereas the odd-electron intermediates [2]+, [2](3+) and [3] show radical-type EPR spectra. A comparison with analogous complexes involving the 3,6-bis(2-oxidophenyl)-1,2,4,5-tetrazine reveals the diminished pi acceptor capability of the pyrazine-containing bridge.  相似文献   

5.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

6.
7.
The reaction of cis-Ru(acac)2(CH3CN)2 (acac = acetylacetonate) with 2,2'-dipyridylamine (L) in ethanolic medium resulted in facile one-pot synthesis of stable [(acac)2RuIII(L)]ClO4 ([1]ClO4), trans-[(acac)2RuII(L)2] (2), trans-[(acac)2RuIII)L)2]ClO4 ([2]ClO4), and cis-[(acac)2RuII(L)2] (3). The bivalent congener 1 was generated via electrochemical reduction of [1]ClO4. Although in [1]+ the dipyridylamine ligand (L) is bonded to the metal ion in usual bidentate fashion, in 2/[2]+ and 3, the unusual monodentate binding mode of L has been preferentially stabilized. Moreover, in 2/[2]+ and 3, two such monodentate L's have been oriented in the trans- and cis-configurations, respectively. The binding mode of L and the isomeric geometries of the complexes were established by their single-crystal X-ray structures. The redox stability of the Ru(II) state follows the order 1 < 2 < 3. In contrast to the magnetic moment obtained for [1]ClO4, mu = 1.84 muB at 298 K, typical for low-spin Ru(III) species, the compound [2]ClO4 exhibited an anomalous magnetic moment of 2.71 muB at 300 K in the solid state. The variable-temperature magnetic measurements showed a pronounced decrease of the magnetic moment with the temperature, and that dropped to 1.59 muB at 3 K. The experimental data can be fitted satisfactorily using eq 2 that considered nonquenched spin-orbit coupling and Weiss constant in addition to the temperature-independent paramagnetism. [1]ClO4 and [2]ClO4 displayed rhombic and axial EPR spectra, respectively, in both the solid and the solution states at 77 K.  相似文献   

8.
Reaction of 3,6-diaryl-1,2,4,5-tetrazines (aryl = R = phenyl, 2-furyl or 2-thienyl) with 2 equiv of Ru(acac)2(CH3CN)2 results in reductive tetrazine ring opening to yield diruthenium complexes [(acac)2Ru(III)(dih-R(2-))Ru(III)(acac)2] bridged by the new 1,2-diiminohydrazido(2-) (dih-R(2-) = HNC(R)NNC(R)NH(2-)) ligands. rac/meso diastereoisomers could be detected and separated for the compounds with R = phenyl and 2-thienyl, all species are diamagnetic and were characterized by 1H NMR spectroscopy. Crystal structure determination of the meso isomers with R = phenyl and 2-thienyl confirmed the 1,2-diiminohydrazido formulation through long N-N (approximately 1.40 A) and short C=N(H) bonds (approximately 1.31 A), implying two bridged ruthenium(III) centers at about 4.765 A distance with strong antiferromagnetic coupling. The complexes undergo two reversible and well-separated one-electron reduction and oxidation processes, respectively. EPR Spectroscopy of the paramagnetic intermediates with comproportionation constants K(c) > 10(12) and UV-vis-NIR spectroelectrochemistry were used to identify the accessible redox states as [(acac)2Ru(II)(dih-R(2-))Ru(II)(acac)2]2-, [(acac)2Ru(II)(dih-R(*-))Ru(II)(acac)2]-, [(acac)2Ru(III)(dih-R(2-))Ru(III)(acac)2], [(acac)2Ru(III)(dih-R(*-))Ru(III)(acac)2]+, and [(acac)2Ru(III)(dih-R)Ru(III)(acac)2]2+. While the UV-vis-NIR spectroscopic response of [(acac)2Ru(dih-R)Ru(acac)2](0/-/2-) is very similar to that of [(bpy)2Ru(adc-R)Ru(bpy)2](4+/3+/2+), adc-R(2-) = 1,2-diacylhydrazido(2-), the EPR result indicating ligand-centered spin for [(acac)2Ru(II)(dih-R(*-))Ru(II)(acac)2]- despite deceptive NIR absorptions around 1400 nm reveals distinct differences in the electronic structures.  相似文献   

9.
The series of 4-center unsaturated chelate ligands A═B-C═D with redox activity to yield (-)A-B═C-D(-) in two steps has been complemented by two new combinations RNNC(R')E, E = O or S, R = R' = Ph. The ligands N-benzoyl-N'-phenyldiazene = L(O), and N-thiobenzoyl-N'-phenyldiazene = L(S), (obtained in situ) form structurally characterized compounds [(acac)(2)Ru(L)], 1 with L = L(O), and 3 with L = L(S), and [(bpy)(2)Ru(L)](PF(6)), 2(PF(6)) with L = L(O), and 4(PF(6)) with L = L(S) (acac(-) = 2,4-pentanedionato; bpy = 2,2'-bipyridine). According to spectroscopy and the N-N distances around 1.35 ? and N-C bond lengths of about 1.33 ?, all complexes involve the monoanionic (radical) ligand form. For 1 and 3, the antiferromagnetic spin-spin coupling with electron transfer-generated Ru(III) leads to diamagnetic ground states of the neutral complexes, whereas the cations 2(+) and 4(+) are EPR-active radical ligand complexes of Ru(II). The complexes are reduced and oxidized in reversible one-electron steps. Electron paramagnetic resonance (EPR) and UV-vis-NIR spectroelectrochemistry in conjunction with time-dependent density functional theory (TD-DFT) calculations allowed us to assign the electronic transitions in the redox series, revealing mostly ligand-centered electron transfer: [(acac)(2)Ru(III)(L(0))](+) ? [(acac)(2)Ru(III)(L(?-))] ? [(acac)(2)Ru(III)(L(2-))](-)/[(acac)(2)Ru(II)(L(?-))](-), and [(bpy)(2)Ru(III)(L(?-))](2+)/[(bpy)(2)Ru(II)(L(0))](2+) ? [(bpy)(2)Ru(II)(L(?-))](+) ? [(bpy)(2)Ru(II)(L(2-))](0). The differences between the O and S containing compounds are rather small in comparison to the effects of the ancillary ligands, acac(-) versus bpy.  相似文献   

10.
Based on data from more than 40 crystal structures of metal complexes with azo-based bridging ligands (2,2'-azobispyridine, 2,2'-azobis(5-chloropyrimidine), azodicarbonyl derivatives), a correlation between the N?N bond lengths (d(NN) ) and the oxidation state of the ligand (neutral, neutral/back-donating, radical-anionic, dianionic) was derived. This correlation was applied to the analysis of four ruthenium compounds of 2,2'-azobispyridine (abpy), that is, the new asymmetrical rac-[(acac)(2) Ru1(μ-abpy)Ru2(bpy)(2) ](ClO(4) )(2) ([1](ClO(4) )(2) ), [Ru(acac)(2) (abpy)] (2), [Ru(bpy)(2) (abpy)](ClO(4) )(2) ([3](ClO(4) )(2) ), and meso-[(bpy)(2) Ru(μ-abpy)Ru(bpy)(2) ](ClO(4) )(3) ([4](ClO(4) )(3) ; acac(-) =2,4-pentanedionato, bpy=2,2'-bipyridine). In agreement with DFT calculations, both mononuclear species 2 and 3(2+) can be described as ruthenium(II) complexes of unreduced abpy(0) , with 1.295(5)相似文献   

11.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

12.
The diamagnetic title complexes were obtained from Ru(acac)(2)(CH(3)CN)(2) and 2-aminophenol or 2-aminothiophenol. X-ray structure analysis of (L(1))Ru(acac)(2) (L(1) = o-iminoquinone) revealed C-C intra-ring, C-O, and C-N distances which suggest a Ru(III)-iminosemiquinone oxidation state distribution with antiparallel spin-spin coupling. One-electron oxidation and reduction of both title compounds to paramagnetic monocations [(L)Ru(acac)(2)](+) or monoanions [(L)Ru(acac)(2)](-) occurs reversibly at widely separated potentials (deltaE > 1.3 V) and leads to low-energy shifted charge transfer bands. In comparison with clearly established Ru(II)-semiquinone or Ru(III)-catecholate systems the g tensor components 2.23 > g(1) > 2.09, 2.16 > g(2) > 2.07, and 1.97 > g(3) > 1.88 point to considerable metal contributions to the singly occupied MO, corresponding to Ru(III) complexes with either o-quinonoid (--> cations) or catecholate-type ligands (--> anions) and only minor inclusion of Ru(IV)- or Ru(II)-iminosemiquinone formulations, respectively. The preference for the Ru(III) oxidation state for all accessible species is partially attributed to the monoanionic 2,4-pentanedionate (acac) co-ligands which favor a higher metal oxidation state than, e.g., neutral 2,2'-bipyridine (bpy).  相似文献   

13.
Aromatic ring amination reactions in the ruthenium complex of 2-(phenylazo)pyridine is described. The substitutionally inert cationic brown complex [Ru(pap)(3)](ClO(4))(2) (1) (pap = 2-(phenylazo)pyridine) reacts smoothly with aromatic amines neat and in the presence of air to produce cationic and intense blue complexes [Ru(HL(2))(3)](ClO(4))(2) (2) (HL(2) = 2-[(4-(arylamino)phenyl)azo]pyridine). These were purified on a preparative TLC plate. The X-ray structure of the new and representative complex 2c has been solved to characterize them. The results are compared with those of the starting complex, [Ru(pap)(3)](ClO(4))(2) (1). The transformation 1 --> 2 involves aromatic ring amination at the para carbon (with respect to the diazo function) of the pendant phenyl rings of all three coordinated pap ligands in 1. The transformation is stereoretentive, and the amination reaction is regioselective. The extended ligand HL(2) coordinates as a bidentate ligand and chelates to ruthenium(II) through the pyridine and one of the azo nitrogens. The amine nitrogen of this bears a hydrogen atom and remains uncoordinated. Similarly, the amination reaction on the mixed-ligand complex [Ru(pap)(bpy)(2)](ClO(4))(2) produces the blue complex [Ru(HL(2))(bpy)(2)](ClO(4))(2) (3) as anticipated. The reactions of [RuCl(2)(dmso)(4)] and [Ru(S)(2)(L)(2)](2+) (dmso = dimethyl sulfoxide, S = labile coordinated solvent, L = 2,2'-bipyridine (bpy) and pap) with the preformed HL(2) ligand have been explored. The structure of the representative complex [RuCl(2)(HL(2a))(2)] (5a) is reported. It has the chlorides in trans configuration while the pyridine as well as azo nitrogens are in cis geometry. Optical spectra and redox properties of the newly synthesized complexes are reported. All the ruthenium complexes of HL(2) are characterized by their intense blue solution colors. The lowest energy transitions in these complexes appear near 600 nm, which have been attributed to intraligand charge-transfer transitions. For example, the lowest energy visible range transition in [Ru(HL(2b))(3)](2+) appears at 602 nm and its intensity is 65 510 M(-1) cm(-1). All the tris chelates show multiple-step electron-transfer processes. In [Ru(HL(2))(3)](2+), six reductions waves constitute the complete electron-transfer series. The electrons are believed to be added successively to the three azo functions. In the mixed-ligand chelates [Ru(HL(2))(pap)(2)](2+) and [Ru(HL(2))(bpy)(2)](2+) the reductions due to HL(2), pap, and bpy are observed.  相似文献   

14.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

15.
Binuclear beta-diketonatoruthenium(III) complexes [[Ru(acac)(2)](2)(tae)], [[Ru(phpa)(2)](2)(tae)], and [(acac)(2)Ru(tae)Ru(phpa)(2)] and binuclear and mononuclear bipyridine complexes [[Ru(bpy)(2)](2)(tae)](PF(6))(2) and [Ru(bpy)(2)(Htae)]PF(6) (acac = 2,4-pentanedionate ion, phpa = 2,2,6,6-tetramethyl-3,5-heptanedionate ion, tae = 1,1,2,2-tetraacetylethanate dianion, and bpy = 2,2'-bipyridine) were synthesized. The new complexes have been characterized by (1)H NMR, MS, and electronic spectral data. Crystal and molecular structures of [[Ru(acac)(2)](2)(tae)] have been solved by single-crystal X-ray diffraction studies. Crystal data for the meso isomer of [[Ru(acac)(2)](2)(tae)] have been confirmed by the dihedral angle result that two acetylacetone units of the bridging tae ligand are almost perpendicular to one another. A detailed investigation on the electrochemistry of the binuclear complexes has been carried out. The electrochemical behavior details of the binuclear complexes have been compared with those of the mononuclear complexes obtained from the half-structures of the corresponding binuclear complexes. Studies on the effects of solvents on the mixed-valence states of Ru(II)-Ru(III) and Ru(III)-Ru(IV) complexes have been carried out by various voltammetric and electrospectroscopic techniques. A correlation between the comproportionation constant (K(c)) and the donor number of the solvent has been obtained. The K(c) values for the binuclear complexes have been found to be low because of the fact that two acetylacetone units of the bridging tae ligand are not in the same plane, as revealed by the crystal structure of [[Ru(acac)(2)](2)(tae)].  相似文献   

16.
17.
The tppz-bridged diruthenium(II) complex [(dpk)(Cl)Ru(II)(mu-tppz)Ru(II)(Cl)(dpk)](ClO4)2, [2](ClO4)2, and mononuclear [(dpk)(Cl)Ru(II)(tppz)](ClO4), [1](ClO4) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine, dpk = 2,2'-dipyridylketone], have been synthesized. The 260 mV separation between successive one-electron oxidation couples in [2]2+ translates to a relatively small comproportionation constant, Kc, of 2.5 x 10(4) for the intermediate. It is shown how electrochemical data (E(ox), E(red), Kc) reflect the donor/acceptor effects of ancillary ligands L in a series of systems [(L)ClRu(mu-tppz)RuCl(L)]n, particularly the competition between L and tppz for electron density from the metal. According to EPR (g1 = 2.470, g2 = 2.195, and g3 = 1.873 at 4 K) the intermediate [2]3+ is a mixed-valent Ru(II)Ru(III) species which shows a rather narrow intervalence charge transfer (IVCT) band at 1800 nm (epsilon = 1500 M(-1) cm(-1)). The width at half-height (Deltanu(1/2)) of 700 cm(-1) of the IVCT band is much smaller than the calculated value of 3584 cm(-1), obtained by using the Hush formula Deltanu(1/2) = (2310E(op))(1/2) (E(op) = 5556 cm(-1), energy of the IVCT transition) which would be applicable to localized (Class II) mixed-valent Ru(II)Ru(III) systems. Valence delocalization in [2]3+ is supported by the uniform shift of the nu(C=O) band of the N,N'-coordinated dpk ligands from 1676 cm(-1) in the Ru(II)Ru(II) precursor to 1690 cm(-1) in the Ru(2.5)Ru(2.5) form, illustrating the use of the dpk acceptor to act as reporter ligand via the free but pi-conjugated organic carbonyl group. The apparent contradiction between the moderate value of Kc and the narrow IVCT band is being discussed considering "borderline" or "hybrid" "Class II-III" concepts of mixed-valency, as well as coordination aspects, i.e., the bis-tridentate nature of the pi-acceptor bridging ligand. Altogether, the complex ions [1]+ and [2]2+ display four and five successive reduction processes, respectively, involving both tppz- and dpk-based unoccupied pi orbitals. The one-electron reduced form [2]+ has been assigned as a tppz*- radical-anion-containing species which exhibits a free-radical-type EPR signal at 4K (g(parallel) = 2.002, g(perpendicular) = 1.994) and one moderately intense ligand-based low-energy band at 965 nm (epsilon = 1100 M(-1) cm(-1)).  相似文献   

18.
The bis-bidentate bridging function of gbha2- with N,O-/N,O- coordination was observed for the first time in the complex (mu-gbha)[Ru(III)(acac)2]2 (1). Density functional theory calculations of 1 yield a triplet ground state with a large (deltaE > 6000 cm(-1)) singlet-triplet gap. Intermolecular antiferromagnetic coupling was observed (J approximately -5.3 cm(-1)) for the solid. Complex 1 undergoes two one-electron reduction and two one-electron oxidation steps; the five redox forms [(mu-gbha)[Ru(acac)2]2]n (n = -2, -1, 0, +1, +2) were characterized by UV-vis-NIR spectroelectrochemistry (NIR = near infrared). The paramagnetic intermediates were also investigated by electron paramagnetic resonance (EPR) spectroscopy. The monoanion with a comproportionation constant K(c) of 2.7 x 10(8) does not exhibit an NIR band for a Ru(III)/Ru(II) mixed-valent situation; it is best described as a 1,4-diazabutadiene radical anion containing ligand gbha*3-, which binds two ruthenium(III) centers. A Ru(III)-type EPR spectrum with g1 = 2.27, g2 = 2.21, and g3 = 1.73 is observed as a result of antiferromagnetic coupling between one Ru(III) and the ligand radical. The EPR-active monocation (K(c) = 1.7 x 10(6)) exhibits a broad (deltanu(1/2) = 2600 cm(-1)) intervalence charge-transfer band at 1800 nm, indicating a valence-averaged (Ru3.5)2 formulation (class III) with a tendency toward class II (borderline situation).  相似文献   

19.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

20.
Visible-light-induced photoreactions of [(bpy)2Ru(II)L]Cl2 (bpy = bipyridine, L = trans-1,2-bis(4-(4'-methyl)-2,2'-bipyridyl) ethene) in aqueous solution are examined. From pH titrations, it is found that the Ru complex is a stronger base (pKa* = 6) in the excited state than in the ground state (pKa = 4). Photolysis of the [(bpy)2Ru(II)L] complex in solutions at pH 7 and 12 led to formation of species with increased emission quantum yields, approximately 55 nm blue-shift of the emission maximum to 625 nm, and disappearance of the absorption band at 330 nm, the latter arising from the olefinic bond of the L ligand. No spectral changes are observed in solutions at pH < or = 4. With the help of chromatography, mass spectroscopy, Raman spectroscopy, and NMR, photoproducts formed at neutral pH have been analyzed. It is found that the major product is a dimer of [(bpy)2Ru(II)L], dimerizing around the double bond. Photoreactions do not occur in the dark or in the aprotic solvent acetonitrile. We propose that a Ru(III) radical intermediate is formed by photoinduced excited-state electron and proton transfer, which initiates the dimerization. The radical intermediate can also undergo photochemical degradative reductions. Below pH 4, the emission quenching is proposed to arise via protonation of the monoprotonated [(bpy)2Ru(II)LH] followed by electron transfer to the viologen-type moiety created by protonation. The products of photodegradation at pH > 12 are different from those of pH 7, but the mechanism of the degradation at pH > 12 was not elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号