首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogels are three-dimensional networks of hydrophilic polymer chains. Hydrogels can absorb/desorb water and hydrophilic solutes. This behavior is called swelling/shrinking, as it is accompanied by a volume change. The amounts of absorbed substances depend on the structure of the hydrogel and the composition of the coexisting liquid phase. This paper deals with experimental investigations of the swelling behavior of nonionic, chemically crosslinked, synthetic hydrogels of N-isopropyl acrylamide. The swelling equilibrium of some hydrogels in aqueous solutions of sodium chloride was investigated at 298 K. The experimental results are presented, discussed and correlated/predicted with a thermodynamic model which combines an expression for the Gibbs energy of a liquid phase with an expression for the Helmholtz energy of an elastic network.  相似文献   

2.
Novel thermosensitive hydrogels based on polymerization of N-isopropyl acrylamide, Sodium acrylate, and diacetone acrylamide were synthesized, The swelling ratio and dynamic swelling were investigated. The results indicated that the hydrogels exhibited high water uptake and themosensitivity. The swelling properties and volume phase transition temperature could be adjusted by contents of the comonomers in the gels.  相似文献   

3.
Deuterium isotope effects on swelling kinetics and volume phase transition in typical polymer hydrogels (poly(N-isopropylacrylamide) and polyacrylamide gels) are discussed. Deuterium substitutions affect on the swelling kinetics and volume phase transition of the polymer hydrogels. The slower swelling kinetics of hydrogels in D2O than in H2O arises mainly from the high viscosity of the medium. The deuterium isotope effect on the swelling-shrinking curve of hydrogels would come from the different polymer-solvent interaction. The microenvironments of hydrogels studied by solvatochromic fluorescence probe are compared with the bulk state. The zipper-type hydrogen-bonding inter-polymer complexes (poly(acrylic acid)-polyacrylamide and poly(acrylic acid)-poly(N-acryloylglycineamide)) are also investigated and show the huge isotope effect on the phase separation temperature.  相似文献   

4.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

5.
The synthesis of nanostructured poly(N-isopropylacrylamide) (polyNIPA) hydrogels by a two-stage polymerization process is reported here. The process involves the synthesis of slightly crosslinked polyNIPA nanoparticles by inverse (w/o) microemulsion polymerization; then, these particles are dried, cleaned and dispersed in an aqueous solution of NIPA and a crosslinking agent (N,N-methylene-bis-acrylamide or NMBA) and polymerized to produce the nanostructured hydrogels. Their swelling and de-swelling kinetics, volume phase transition temperatures (T VPT) and mechanical properties at the equilibrium swollen state are investigated as a function of the weight ratio of polyNIPA particles to monomer (NIPA). The nanostructured gels exhibit larger equilibrium water uptake, faster swelling and de-swelling rates and similar T VPT than those of the conventional ones; moreover, the elastic and Young moduli are larger than those of the conventional hydrogels at similar swelling ratios. The fast swelling and de-swelling kinetics are explained in terms of the controlled inhomogeneities introduced by the method of synthesis.  相似文献   

6.
采用分步法用电子加速器辐射合成了聚丙烯酰胺(PAAm)/聚异丙基丙烯酰胺(PNIPAAm)互穿网络水凝胶,并考察了温度、pH值、离子强度对其溶胀性能的影响.研究表明:互穿水凝胶具有温度敏感性,且其体积相变与互穿网络中PAAm和PNIPAAm含量有关,随着网络中PAAm含量的增加水凝胶的体积相变趋于平缓,可以通过改变PAAm和PNIPAAm的组成比来控制水凝胶的体积相变行为.此外,互穿水凝胶还具有pH敏感性和一定的抗盐性.  相似文献   

7.
8.
The thermoresponsive behavior and mechanical properties of nanostructured hydrogels, which consist of poly(acrylamide) nanoparticles embedded in a cross-linked poly(N-isopropylacrylamide) hydrogel matrix, are reported here. Nanostructured hydrogels exhibit a tuned volume phase transition temperature (T VPT), which varies with nanoparticle content in the range from 32 up to 39–40 °C. Moreover, larger equilibrium water uptake, faster swelling and de-swelling rates, and larger equilibrium swelling at 25 °C were obtained with nanostructured hydrogels compared with those of conventional ones. Elastic and Young’s moduli were larger than those of conventional hydrogels at similar swelling ratios. The tuned T VPT and the de-swelling rate were predicted with a modified Flory–Rehner equation coupled with a mixing rule that considers the contribution of both polymers. These behaviors are explained by a combination of hydrophilic/hydrophobic interactions and by the controlled inhomogeneities (nanoparticles) introduced by the method of synthesis.  相似文献   

9.
We report the changes in the structure and thermoresponsive behavior of poly(N-isopropylacrylamide) (PNIPAm) hydrogels when gold nanostructures are synthesized in situ within the hydrogel matrix. Cross-linked PNIPAm hydrogels were synthesized using NIPAm and 0.00-3.50% (w/w versus NIPAm) of N,N'-methylenebisacrylamide (MBAm) and/or N,N'-cystaminebisacrylamide (CBAm) as cross-linking agents. The hydrogels were soaked in potassium tetrachloroaurate to introduce gold ions. The hydrogels containing Au3+ were then immersed in a sodium borohydride solution to reduce the gold ions. Infrared spectroscopy, UV-visible spectroscopy, and equilibrium swelling were used to examine the structural/physical differences between gels of different compositions; UV-visible spectroscopy and mass measurements were used to observe the kinetics and thermodynamics of the hydrogel volume phase transition. These studies revealed several differences in the physical characteristics and thermoresponsive behavior of hydrogels based on cross-linker identity and the presence or absence of gold nanostructures. Hydrogels with gold nanostructures and high CBAm and low MBAm content have equilibrium swelling masses 3-20 times their native analogues. In comparison, gold-containing hydrogels with high MBAm and low CBAm content have swelling masses that are equal to their native analogues. Additionally, the gold-containing PNIPAm hydrogels cross-linked with only CBAm have a deswelling temperature of approximately 40 degrees C, approximately 8 degrees C above the samples cross-linked with only MBAm. Varying the CBAm content and introducing gold enables tuning of the deswelling temperature.  相似文献   

10.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   

11.
A circular system is employed in this paper to investigate the swelling behaviors of polyampholyte hydrogels; this circular system can effectively eliminate the disturbance of various factors and keep the surrounding environment constant. It is found that there exists a spontaneous volume transition to the collapsed state of polyampholyte hydrogels, which is attributed to the overshooting effect, and the transition can occur repeatedly under certain conditions. (13)C NMR is employed to investigate the swelling behavior of polyampholyte hydrogels. The swelling kinetics of polyampholyte hydrogels under various circular media and various circular runs are also investigated in this paper. All the results suggest that the spontaneous volume transition to the collapsed state of polyampholyte hydrogels is dominated by pure electrostatic interaction between different charges in polymer chains.  相似文献   

12.
N-isopropylacrylamide (NIPAAM)/maleic acid (MA) copolymeric hydrogels were prepared by irradiating the ternary mixtures of NIPAAM/MA/Water by γ-rays at ambient temperature. The influence of external stimuli such as pH and temperature of the swelling media on the equilibrium swelling properties was investigated. The hydrogels showed both temperature and pH responses. The effect of comonomer concentration and irradiation dose on the swelling equilibria and phase transition was studied. For the characterization of these hydrogels, the diffusion behaviour and molecular weight between crosslinks were investigated.  相似文献   

13.
PVA-PAMPS-PAA三元互穿网络型水凝胶的合成及其性能研究   总被引:4,自引:0,他引:4  
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)以及聚乙烯醇(PVA)为原料,制备了PVA-PAMPS-PAA三元互穿网络型(T-IPN)水凝胶.红外分析表明,PVA与PAA以及PAMPS之间形成了较强的氢键,使得PVA分子上的C—O伸缩震动吸收峰移向了低波数处.X射线衍射以及电镜分析表明,当PVA用量较低时,PVA能均匀的穿插于凝胶网络中,形成完善的互穿网络结构,当PVA用量过高时,部分的PVA结晶而使得凝胶出现相分离.研究了该三元互穿网络型水凝胶的溶胀性能,结果表明,该水凝胶的平衡溶胀比在200至340之间,并且随着AA以及AMPS用量的增加,凝胶的溶胀速率以及平衡溶胀比均升高.该三元互穿网络型水凝胶在酸性溶液中和在碱性溶液中表现出截然不同的消溶胀性能;并且随着溶液pH的升高,凝胶在pH=9.0附近出现体积突变,表现出pH敏感性.通过研究T-IPN水凝胶的抗压缩性能发现,利用线型高分子、柔性高分子网络以及刚性高分子网络制备的三元互穿网络型水凝胶能在高溶胀比下保持较高的强度.溶胀比为180的T-IPN水凝胶,其最大抗压缩强度可达12.1 MPa.进一步研究发现,凝胶的组成以及溶胀比均对凝胶的抗压缩强度和压缩应变均存在较大的影响.  相似文献   

14.
基于Maurer和Prausnitz的凝胶相平衡条件,建立了凝胶的溶胀模型.模型假设凝胶是以凝胶组分及凝胶吸收的溶液为核心,以弹性半渗透膜为壳的复合体.并采用UNIQUAC方程计算凝胶相及与之共存液相的Gibbs过剩自由能,采用“phantomnetwork”理论计算凝胶的弹性自由能,采用“自由体积”计算分子的尺度效应.同时以N-异丙基丙烯酰胺(IPAAm)为单体合成了IPAAm凝胶.研究了25 ℃时IPAAm凝胶在丙酮水溶液中的溶胀行为,并测定了丙酮在胶体相和与之共存液相中的分配,以检验模型的关联与预报能力.结果表明,模型预报的单体总量和交联剂浓度对凝胶溶胀的影响与实验符合得很好.而且凝胶溶胀时,能很好地预测丙酮在两相中的分配,表明模型具有很好的关联和预报能力.  相似文献   

15.
In this study, swelling behavior and mechanical properties of polyelectrolyte cationic hydrogels of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA), and poly((2-dimethylamino) ethyl methacrylate-co-butyl methacrylate) (P(DMAEMA-co-BMA)), were investigated. Hydrogels were prepared by free-radical solution copolymerization of DMAEMA and BMA using ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent. Compression-strain measurements were used to analyze the mechanical properties of the hydrogels. It was found that increasing the amount of BMA comonomer in the gel structure increases the compression modulus of the material. The results of mechanical measurements were used to characterize the network structure of the hydrogels, namely the effective crosslinking density (. It was found that exceeds the theoretical crosslinking density (νt) calculated from the initial amount of EGDMA used for hydrogel synthesis. These hydrogels demonstrated dual sensitivity to both pH and temperature. It was shown that the pH-sensitive or temperature-sensitive phase transition behavior of the gels can be changed by changing the temperature or pH of the swelling medium at constant hydrogel composition. Increasing the temperature decreased the transition pH of the pH-sensitive phase transition. On the other hand, increasing the pH of the surrounding medium decreased the transition temperature of the temperature-sensitive phase transition. Incorporation of BMA in the gel structure has a significant effect on the transition point of the gel. Increasing the BMA content reduced the transition pH and temperature of the pH- and temperature-sensitive phase transition, respectively. The similar effect of increasing temperature or BMA content can be explained by the role of hydrophobicity in the phase transition behavior of hydrogels. Finally, the results of equilibrium swelling and compression-strain measurements were used to calculate the polymer-solvent interaction parameters of these hydrogels using the Flory-Rehner equation of equilibrium swelling.  相似文献   

16.
A new kind of pH-/temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium carboxymethylcellulose (CMC) and poly(N-isopropylacrylamide) (PNIPA) cross-linked by inorganic clay (CMC/PNIPA/Clay hydrogel) was prepared. The temperature- and pH-responsive behaviors, the mechanical properties of these hydrogels were investigated. The CMC/PNIPA/Clay hydrogels exhibited a volume phase transition temperature around 32 °C with no significant deviation from the conventional PNIPA hydrogels. The swelling ratio of the CMC/PNIPA/Clay hydrogels gradually decreased with increasing the contents of clay. The influence of pH value on swelling behaviors showed that there is a maximum swelling ratio at pH 5.9. Moreover, the CMC/PNIPA/Clay hydrogels exhibited excellent mechanical properties with high tensile stress and elongation at break in excess of 1200%.  相似文献   

17.
疏水改性智能水凝胶P(NIPA-co-DiAB)的合成及其温敏行为   总被引:2,自引:0,他引:2  
耿同谋 《应用化学》2010,27(6):637-641
以N-异丙基丙烯酰胺(NIPA)和N,N-双烯丙基苄胺(DiAB)为共聚单体、N,N-亚甲基双丙烯酰胺(BIS)为交联剂、十二烷基硫酸钠(SDS)为表面活性剂、过硫酸铵(APS)-四甲基乙二胺(TMEDA)为氧化还原引发体系,采用自由胶束交联共聚法合成了疏水基团为芳香基的疏水改性温敏性智能水凝胶P(NIPA-co-DiAB)。研究了DiAB摩尔分数(x(DiAB))对水凝胶溶胀性能的影响。 在初始溶胀阶段,随着x(DiAB)由0增大至3%,P(NIPA-co-DiAB)水凝胶的溶胀行为由Fickian扩散转变为non-Fickian扩散。x(DiAB)分别为0、1%、2%和3%时,P(NIPA-co-DiAB)水凝胶的平衡溶胀率SR0在蒸馏水中分别为63.6、93.5、141.6和167.4,在0.01 mol/L SDS溶液中分别为63.1、71.0、59.0和77.5,在CTAB溶液中分别为37.6、42.2、44.1和60.0,在Triton X-100溶液中分别为30.9、49.4、68.5和88.3。 结果表明,P(NIPA-co-DiAB)水凝胶的(SR0)大于PNIPA水凝胶,且在蒸馏中比在0.01 mol/L表面活性剂溶液中要大。 加入0.01 mol/L Triton X-100、CTAB或SDS后,PNIPA水凝胶的体积相变温度或较低临界溶解温度(LCST)由32.5 ℃分别增加至35.4、45.6和80 ℃。P(NIPA-co-DiAB)水凝胶的LCST由32.0~32.5 ℃分别增加至34.7~35.6 ℃、45.8~46.2 ℃和80 ℃。 加入表面活性剂能增加P(NIPA-co-DiAB)水凝胶的体积相变温度,高的体积相变温度与DiAB含量无关。  相似文献   

18.
Transition between collapsed state phases and discontinuous volume phase transition for a hydrogen bonding gel, poly(methacrylic acid-co-dimethyl acrylamide), were observed by using both the volume measurements and fluorescence intensity of the pyranine fluoroprobe (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt) bonded to the gel by means of electrostatic interactions. In the collapsed state, while there is no appreciable change in the volume of the gel, a considerable variation in the fluorescence intensity occurred around 30 degrees C signaling a second order phase transition between collapsed state phases, from relatively frozen to a fluctuating phase. Our analysis of the data around 30 degrees C indicates that the critical point of gel volume transition belongs to the so-called mean-field universality class, as predicted in Onuki [Phys. Rev. A 38, 2192 (1988)] and by Golubovic and Lubensky [Phys. Rev. Lett. 63, 1082 (1989)]. The relaxation time for the equilibrium swelling critically depends on the temperature and diverges near 60 degrees C, where both fluorescence intensity and the volume of the gel change drastically and indicate the discontinuous volume phase transition. The swelling kinetics of the critical gel during the discontinuous volume phase transition can be modeled best with the first term in the expansion of the Li-Tanaka equation for a long initial period of the swelling time.  相似文献   

19.
Here we report the preparation and characterization of nanostructured thermo-responsive poly(acrylamide) (PAM)-based hydrogels. The addition of slightly crosslinked poly(N-isopropylacrylamide) (PNIPA) nanogels to AM reactive aqueous solution produces nanostructured hydrogels that exhibit a volume phase transition temperature (TVPT). Their swelling kinetics, TVPT's and mechanical properties at the equilibrium-swollen state (Heq) are investigated as a function of the concentration of PNIPA nanogels in the nanostructured hydrogels. Nanostructured hydrogels with PNIPA nanogels/AM mass ratios of 20/80 and above exhibit higher Heq and longer time to reach the equilibrium swelling than those of the conventional PAM hydrogels. However, the PNIPA nanogels possess thermo-responsive character missing in conventional PAM hydrogels. The TVPT of nanostructured hydrogels depends on PNIPA nanogel content but their elastic and Young moduli are larger than those of conventional hydrogels at similar swelling ratios. Swelling kinetics, TVPT, and mechanical properties are explained in terms of the controlled in-homogeneities introduced by the PNIPA nanogels during the polymerization.  相似文献   

20.
New thermoresponsive crosslinked hydrogels with controlled multiblock copolymer structure were prepared from equimolar amounts of α,ω-diamino poly(propylene glycol)s with molecular weights (MW) 230, 400, and 2,000 g mol?1 and diepoxy-terminated poly(ethylene glycol)s of approximate MW 1,000; 2,000; and 4,000 g mol?1. Their thermoresponsive character was investigated on the 10–70 °C interval, while the swelling behavior was tested at 21, 37, and 50 °C. All hydrogels displayed temperature sensitivity, but a volume phase transition was noticed only in the case of poly(propylene glycol) (PPG)2000-containing hydrogels. The volume phase transition temperature (T VPT ) depended on the MW of the hydrophilic poly(ethylene glycol) (PEG) chains attached to the PPG2000 block, as well as on the added salts. Longer PEG blocks determined a shift of T VPT towards higher values, while the influence of the salt added was in agreement with the Hofmeister series, except for NaH2PO4 which determined the destruction of the hydrogel network. The equilibrium swelling degree depended on the MW of both PEG and PPG blocks, as well as on temperature. The analysis of the swelling process indicated a modification of the gel characteristics with temperature and second-order kinetics for the water penetration into the hydrogel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号