首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Silica/poly(methyl methacrylate) nanocomposite latex particles have been synthesized by emulsion polymerization of methyl methacrylate using a nonionic surfactant: nonylphenol poly(oxyethylene) and three different initiators, namely: 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA), potassium persulfate (KPS) and azobis(isobutyronitrile) (AIBN), being cationic, anionic and nonionic, respectively. A silica sol with an average diameter of 68 nm was used as the seed. The polymerization reaction was conducted under alkaline conditions in order to evaluate the role of the surface charge of the hydrophilic silica on the coating reaction. AIBA was found to be adsorbed on the silica surface owing to electrostatic interactions of the amidine function of the cationic initiator with the silanolate groups of the oxide surface, while the anionic and the nonionic initiators did not adsorb on silica under the same conditions. Nonetheless, whatever the nature of the initiator, polymerization took place on the silica particles as evidenced by transmission electron microscopy. The extent of interaction between the inorganic surface and the polymer particles was quantified by means of ultracentrifugation and a material balance. As much as 65% by weight of the total polymer formed was found to be present at the silica surface using AIBA, while only 40% for KPS and 25% for AIBN was found to cover the silica particles under alkaline conditions. We demonstrate that by using a cationic initiator and by controlling the pH of the suspension it is possible to significantly decrease the amount of free polymer. Coating of the silica particles took place through a kind of in situ heterocoagulation mechanism. Received: 8 December 2000 Accepted: 22 February 2001  相似文献   

2.
Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.  相似文献   

3.
表面亲水性粒度单分散交联PMMA树脂的合成及表征   总被引:4,自引:0,他引:4  
用种子溶胀聚合方法 ,合成出了粒度单分散的交联聚甲基丙烯酸甲酯微球 .将微球通过水解 ,使其转化为表面带羧基的树脂 .分别用多糖化合物Dextran和DEAE Dextran对水解树脂表面进行包覆涂层 ,然后用n 丁二醇双环氧丙醚分别进行交联 ,制备出两种表面带高交联多糖覆盖层的树脂 .以两种改性树脂为填料 ,以人血清蛋白为试样 ,用HPLC方法对树脂的亲水性能进行了表征 .研究表明 ,两种改性树脂均有很好的亲水性 ,蛋白质的回收率分别在 97%和 99%以上 ,并有良好的机械强度和化学稳定性  相似文献   

4.
An amphoteric initiator of 2,2′-azobis[N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was applied to fabrication of raspberry-shaped composite particles in soap-free emulsion polymerization of styrene in the presence of silica particles surface-modified with 3-methacryoxypropyltrimethoxysilane. In the polymerizations, pH of the solution was ranged from 7.9 to 9.9 to alter dissociation degree of ionizable groups in the initiator. Raspberry-shaped particles were obtained in a pH range of 8.0 to 9.3 followed by a tendency in which average size of polystyrene (PSt) nodules adsorbed onto the silica particles decreased with pH. This tendency was similar to that of polymer particles formed in conventional soap-free emulsion polymerization in the absence of the silica particles. An increase in silica particle concentration led to a decrease in the final size in PSt nodules. The decrease was caused by the stabilization of polymer particles fixed to the silica surface against polymer particle aggregation in water phase.  相似文献   

5.
刘淑娟  敦惠娟  周峰  赵亮  刘霞  蒋生祥 《色谱》2002,20(5):432-435
 利用巯丙基修饰硅胶的自由基链转移反应 ,在硅胶表面原位引发自由基聚合 ,制备了聚甲基丙烯酸甲酯修饰的反相高效液相固定相。通过红外吸收光谱 (FTIR)、拉曼光谱、热失重 (TGA)和元素分析对该固定相进行了表征。该固定相对含氧芳香化合物、多环芳烃等均有良好的分离能力。  相似文献   

6.
In this study, the effect of various polymerization conditions on the shape of the particles produced by dual-seeded dispersion polymerization of a second monomer with polystyrene (PS) and poly(methyl methacrylate) (PMMA) seed particles in the presence of saturated hydrocarbon droplets in a polar media was discussed. It was observed that with changing the affinity between the hydrocarbon and PS seed particles, second monomer type, polarity, and alcohol type of the medium nonspherical particles with a variety of shapes can be produced. Furthermore, we suggested that the presence of PMMA seed particles in the medium affects the distribution of the second polymer domains on the surface of the PS seed particles in addition to the absorbed amount of the hydrocarbon by PS particles and second polymer domains and the distribution of the hydrocarbon between them. Moreover, the experimental results showed that almond shell-like PS particles can be prepared under certain conditions.  相似文献   

7.
Dispersed calcium carbonate particles are encapsulated with poly(methyl methacrylate). The optimum condition for the polymerization is investigated; and the encapsulated particles are characterized by spectrophotometric analysis, acid decomposition, thermal analysis, and microscopic observation. From the conversion comparison of the MMA monomer it is found that the optimum concentration of polymerization initiator is 1.58 × 10?3 mol/L. The highest yield of encapsulation is obtained at 250 rpm with a concentration of 0.5 wt % surfactant (sodium dodecyl benzene sulfonate). A comparison of the Fourier transform IR spectra distinctly indicates the formation of PMMA on the surface of the calcium carbonate particles. The outcome of an acid decomposition test proves that the PMMA coating protects the particles. In addition, thermal analyses and microscopic observation characterize the PMMA on the surface of encapsulated particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4063–4073, 2004  相似文献   

8.
Dual-seeded dispersion polymerization (DSDP) of 2-ethylhexyl methacrylate with polystyrene (PS) and poly(methyl methacrylate) (PMMA) seed beads in the presence of saturated hydrocarbon droplets followed by evaporation of the hydrocarbon was studied. The effect of various polymerization conditions including initiator type and content, stabilizer type and concentration, and different hydrocarbon’s content on the shape of the obtained particles was investigated. The increase of concentration of 2,2'-azobis(isobutyronitrile) (AIBN) had no effect on the shape of the produced almond-shell-like PS particles, although it contributes in the formation of associated composite particles along with larger poly(2-ethylhexyl methacrylate) (PEHMA) beads produced by secondary nucleation. The experimental results showed that other initiators led to the formation of stable golf-ball-like PMMA particles as well as PS ones with symmetric shape. The type of stabilizer did not affect the shape of the particles. This observation suggests that unique almond-shelllike PS particles can be produced through a stabilizer-free DSDP process. The lowering of the concentration of hydrocarbons with long alkyl chains yielded stable disc-like PMMA particles. The formation of functional almond-shell-like particles by using light hydrocarbons was another interesting finding of this research.  相似文献   

9.
在纳米二氧化硅水分散介质中,借助于正离子单体甲基丙烯酰氧乙基三甲基氯化铵(MTC)与未改性纳米二氧化硅颗粒之间的电荷作用,通过MTC与甲基丙烯酸甲酯(MMA)的自由基共聚合,制备了草莓型的PMMA/SiO2复合微球.整个制备反应过程中,纳米二氧化硅无需表面处理,体系中无需另外加入乳化剂或助乳化剂,微球表面吸附的纳米二氧化硅对颗粒起稳定作用.详细讨论了纳米二氧化硅初始添加量、MTC浓度对复合微球的平均粒径、复合微球中二氧化硅含量及微球形态的影响.动态光散射粒度分布仪(DLS)测得复合微球粒径在180~300 nm之间,热重分析(TGA)表明复合微球中二氧化硅含量介于16.4%~40.8%之间.透射电镜(TEM)显示所得复合微球具有草莓型结构,二氧化硅于表面富集.  相似文献   

10.
The emulsion polymerization of methyl methacrylate in the presence of chitosan with potassium persulfate (KPS) as an initiator was examined in a previous article. The free radicals that dissociated from KPS not only initiated the polymerization but also degraded the chitosan molecules. Therefore, in addition to its role as a cationic surfactant, chitosan also participated in the polymerization reaction. When the polymerization was complete, the latex polymer consisted of poly(methyl methacrylate) (PMMA) homopolymer and chitosan–PMMA copolymer. In this article, the structures and thermal properties of latex polymers are examined. Gel permeation chromatography was used to measure the molecular weight of the PMMA homopolymer, with the copolymer composition determined by an elemental analyzer. Scanning and transmission electronic microscopes were used to measure the size of latex particles from different reaction systems. The surface charges of latex particles at several different pH values were determined by the measurement of the ζ potential. All results agreed with the reaction mechanism proposed in the previous article. Finally, the presence of rigid chitosan increased the glass-transition temperature of the final latex polymers. Thermogravimetric analysis showed that the degradation behavior of latex polymers was similar to the unzipping mechanism of PMMA, yet the presence of chitosan units hindered the unzipping of the main chains in chitosan–PMMA copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1646–1655, 2001  相似文献   

11.
The use of a new class of graft polymer surfactants, based on inulin, in emulsion polymerization of poly(methyl methacrylate) (PMMA) and polystyrene (PS) particles is described. PS and PMMA were synthesized by emulsion polymerization, and stable particles with a high monomer content (50 wt %) were obtained with a very small amount of polymeric surfactant ([surfactant]/[monomer] = 0.0033). The latex dispersions were characterized by dynamic light scattering and by transmission electron microscopy to obtain the average particle size and the polydispersity index, and the stability was determined by turbidimetry measurements and expressed in terms of critical coagulation concentration. The last section gives a comparison of PMMA particles prepared by emulsion polymerization using classical surfactants from different types as emulsifiers with that obtained using the copolymer surfactant. It shows the superiority of INUTEC SP1 as it is the only one that allows stable particles at 20 wt % monomer content, with a smaller ratio [surfactant]/[monomer] = 0.002.  相似文献   

12.
Polystyrene (PS) and poly(methyl methacrylate) (PMMA) mixed polymer brushes on the surface of clay layers were prepared by using in situ free radical polymerization. Free radical initiator molecules with two quaternary ammonium groups at both ends were intercalated into the interlayer spacing of clay layers. The amount of polymer brushes grafted on the surface of clay layers can be controlled by controlling the polymerization time. Thermogravimetric analysis, X‐ray diffraction, and high‐resolution transmission electron microscope results indicated successful preparation of the mixed polymer brushes on the surface of clay layers. The kinetics of the grafting of the monomers was also studied. The mixed polymer brushes on the surface of clay layers were used as compatibilizers in blends of PS and PMMA. In the blends, the intercalated clay particles tend to locate at the interface of two phases reducing the interfacial tension. In the meanwhile, PMMA homopolymer chains tend to intercalate into clay layers. The driving force for the intercalation is the compatibility between homo‐PMMA chains and PMMA brushes on the surface of clay layers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5329–5338, 2007  相似文献   

13.
The St?ber method has been adopted to prepare hybrid core-shell particles by coating the surfaces of monodisperse polystyrene beads with uniform silica shells. Polystyrene beads with diameters in the range of 0.1-1.0 microm have been successfully demonstrated for use with this process, and the thickness of the silica coating could be controlled in the range of 50-150 nm by adjusting the concentration of tetraethoxysilane, the deposition time, or both. The morphology and surface smoothness of the deposited silica were found to strongly depend on a number of parameters such as the surface functional groups on the polymer beads, the pH value of the medium, and the deposition time. Hollow spheres made of silica could be obtained by selectively removing the polymer cores via calcination in air at an elevated temperature or by wet etching with toluene. These core-shell colloids were also explored as building blocks to fabricate long-range ordered lattices (or colloidal crystals) that exhibited stop bands different from those assembled from spherical colloids purely made of either polystyrene or silica.  相似文献   

14.
In this study, monodisperse latex particles with specific surface functional groups were synthesized by emulsifier-free emulsion polymerization. Amidine or carboxylated polystyrene nanospheres with narrow size distribution were prepared by emulsion polymerization using AIBA (α,α′-zodiisobutyramidine dihydrochloride) as amine-containing initiator or acrylic acid as carboxyl-containing comonomer, respectively. Factors affecting the particle size and distribution were systemically studied by changing the amount of initiator or monomer, the polymerization temperature, and the stirring speed of emulsion polymerization reactor. Monodisperse polymethylmethacrylate beads were also synthesized by soapless emulsion polymerization using methacrylic acid or aminoethylmethacrylate hydrogen hydrochloride as comonomer for the surface functionalization of the particles. As applications of the latex beads, the polymeric particles were adopted as templating materials for the fabrication of macroporous titania film and meso-macroporous silica particles by colloidal templating method.  相似文献   

15.
A novel surfactant has been synthesized for use in cationic and anionic ring-opening suspension polymerization of PEG-based macromonomers in silicon oil. A polymer of acrylate esters containing pentamethyldisiloxane and PEG was prepared by radical polymerization. The surfactant can stabilize an emulsion of PEG-based macromonomers, initiator, and solvent in silicon oil such that polymer beads are obtained by ring-opening polymerization, initiated either by a Lewis acid (cationic ring opening) or potassium tert-butoxide (anionic ring opening). The average bead size could be controlled by varying the stirring rate and the amount of surfactant and solvent. The surfactant does not interfere with the polymerization and can be removed together with residual silicon oil by a simple washing procedure.  相似文献   

16.
Poly(methyl methacrylate) (PMMA)-based latex particles bearing carboxylic groups at the surface were prepared via emulsion polymerization. The polymerization recipe and process were optimized in order to target monodisperse particles with diameters around 100 nm. The polymerizations were performed using 4,4-azobis(4-cyanopentanoic) acid (ACPA) as initiator and sodium dodecyl sulphate (SDS) as surfactant. The polymerization conversion was determined by both gas chromatography and gravimetry. The final latexes were characterized with respect to particle size, size distribution, surface charge density, electrokinetic properties (i.e. electrophoretic mobility vs pH and ionic strength) and colloidal stability (i.e. coagulation rate constants vs pH and stability factor vs ionic strength).  相似文献   

17.
纳米SiO2锚固光敏基团引发MMA光接枝聚合研究   总被引:1,自引:0,他引:1  
对纳米SiO2进行了锚固光引发剂的表面修饰,进而引发甲基丙烯酸甲脂(MMA)光接枝聚合制备有机/无机复合粒子.纳米SiO2粒子首先用氯化亚砜进行表面氯化,再与光引发剂2-羟基-4-(2-羟基乙氧基)-2-甲基苯丙酮(Irgacure2959)反应从而锚固上光引发剂.通过紫外光引发MMA在经过修饰过的纳米SiO2表面上进行表面光接枝聚合.采用IR、TGA和TEM等方法表征了接枝前后纳米粒子的变化,证明了表面接枝物的存在,并研究了不同反应条件对单体转化率、接枝率和接枝效率的影响.研究结果表明,搅拌对接枝过程的影响比较显著.TGA结果显示未搅拌聚合时接枝率只能达到比较小的程度,而在搅拌条件下180min内MMA的接枝率可达到110%.  相似文献   

18.
This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by ‘grafting from’ polymerization initiated by a redox system comprising ceric ion (Ce4+) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by ‘grafting from’ polymerization initiated by the redox reaction of Ce4+ with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process.  相似文献   

19.
Two-step aqueous polymerizations with a water-soluble initiator of potassium persulfate were conducted to prepare anisotropic composite particles incorporating a silica core smaller than 100 nm. The two-step polymerization consisted of the first polymerization to coat the silica cores with cross-linked polymethylmethacrylate (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) bulge from the core–shell particles. The concentration of ionic comonomer of sodium p-styrenesulfonate (NaSS) in the first polymerization was an important factor to stabilize the core–shell particles during the second polymerization as well as the first one, and an appropriate concentration of NaSS could prepare the anisotropic composite particles incorporating a single core. Another important factor for small, anisotropic composite particles was duration time for swelling the core–shell particles with the second monomer of styrene. Extension of the duration time from 2 to 4 h facilitated protrusion of the PSt bulge from the particles incorporating a 44-nm silica core. The composite particles were also employed to fabricate anisotropic hollow particles. Chemical etching of silica component in the composite particles with hydrofluoric acid successfully created anisotropic hollow polymer particles with a cavity size corresponding to the silica cores.  相似文献   

20.
Liquid crystals (LCs) encapsulated in monodisperse micron-sized polymer particles were prepared to control the size and size distribution of LC droplets in polymer-dispersed LCs. The poly(methyl methacrylate) (PMMA) seed particles were swollen with the mixture of liquid crystal, monomers (methyl methacrylate and styrene) and initiator by using a diffusion-controlled swelling method. A single LC domain was produced by the phase separation between PMMA and LC through polymerization. The optical microscopy and scanning electron microscopy showed that the particles are highly monodisperse with core–shell structure. Moreover, monodisperse LC core domains were confirmed from polarized optical microscope observations. The final particle morphology was influenced by the cross-linking of the seed particle. When linear PMMA particles, which are not cross-linked, were used as a seed, the microcapsules were distorted after annealing for a few days; however, in the case of cross-linked PMMA particles, the core–shell structure was sustained stably after annealing. Received: 22 November 2000 Accepted: 12 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号