首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the statistics of chaotic wavefunctions near periodic orbits using a basis of states which optimise the effect of scarring. These states reflect the underlying structure of stable and unstable manifolds in phase space and provide a natural means of characterising scarring effects in individual wavefunctions as well as their collective statistical properties. In particular, these states may be used to find scarring in regions of the spectrum normally associated with antiscarring and suggest a characterisation of templates for scarred wavefunctions which vary over the spectrum. The results are applied to quantum maps and billiard systems.  相似文献   

2.
The phenomenon of periodic orbit scarring of eigenstates of classically chaotic systems is attracting increasing attention. Scarring is one of the most important "corrections" to the ideal random eigenstates suggested by random matrix theory. This paper discusses measures of scars and in so doing also tries to clarify the concepts and effects of eigenfunction scarring. We propose a universal scar measure which takes into account an entire periodic orbit and the linearized dynamics in its vicinity. This measure is tuned to pick out those structures which are induced in quantum eigenstates by unstable periodic orbits and their manifolds. It gives enhanced scarring strength as measured by eigenstate overlaps and inverse participation ratios, especially for longer orbits. We also discuss off-resonance scars which appear naturally on either side of an unstable periodic orbit.  相似文献   

3.
Unstable periodic orbits are known to originate scars on some eigen-functions of classically chaotic systems through recurrences causing that some part of an initial distribution of quantum probability in its vicinity returns periodically close to the initial point. In the energy domain, these recurrences are seen to accumulate quantum density along the orbit by a constructive interference mechanism when the appropriate quantization (on the action of the scarring orbit) is fulfilled. Other quantized phase space circuits, such as those defined by homoclinic tori, are also important in the coherent transport of quantum density in chaotic systems. The relationship of this secondary quantum transport mechanism with the standard mechanism for scarring is here discussed and analyzed.  相似文献   

4.
秦陈陈  杨双波 《物理学报》2014,63(14):140507-140507
研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系.观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态.还研究了同心与非同心Sinai台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在θ=3π/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡.  相似文献   

5.
We discuss some of the models for eigenfunction localization in Hamiltonian systems. In particular, we review some of our work on classical parametric scaling of orbits and identification of localized states in a two-dimensional quartic oscillator system which is deep in the classically chaotic region. We show that visual methods are a necessary complement to quantitative methods based on information entropies. Our preliminary results indicate that the periodic orbit stability determines the degree of localization in a class of states, even when the stable regions are of negligible measure.  相似文献   

6.
We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirectional periodic train of impulses. For high frequencies of the train the classical system becomes chaotic and leads to fast ionization. By contrast, the quantum system is found to be remarkably stable. We find this quantum localization to be directly related to the existence of "scars" of the unstable periodic orbits of the system. The localization length is given by the energy excursion along the periodic orbits.  相似文献   

7.
We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot. We demonstrate that the nonexact velocity reversal and the diffraction at the edges of the normal-superconductor contact render the classical dynamics of these systems mixed indicating the limitations of a widely used retracing approximation. We point out the close relation between the mixed classical phase space and the properties of the quantum states of Andreev billiards, including periodic orbit scarring and localization of the wave function onto other classical phase space objects such as intermittent regions and quantized tori.  相似文献   

8.
9.
In present article we consider a combinatorial problem of counting and classification of periodic orbits in dynamical systems on an example of the baker’s map. Periodic orbits of a chaotic system can be organized into a set of clusters, where orbits from a given cluster traverse approximately the same points of the phase space but in a different time-order. We show that counting of cluster sizes in the baker’s map can be turned into a spectral problem for matrices from truncated unitary ensemble (TrUE). We formulate a conjecture of universality of the spectral edge in the eigenvalues distribution of TrUE and utilize it to derive asymptotics of the second moment of cluster distribution in the regime when both the orbit lengths and the parameter controlling closeness of the orbit actions tend to infinity. The result obtained allows to estimate the size of average cluster for various numbers of encounters in periodic orbit.  相似文献   

10.
在天体物理与等离子体有关的大量原子过程中,需要精确计算大量含剧烈振荡波函数的积分.直接数值积分既笨拙又不能保证所需精度。为此,对不同波数的情形,采用Belling渐近展开法,提高了其中位相的精度;对相同波数的情形,则给出了J(n,X)的解析表达式。计算模拟结果表明有足够高的精度.  相似文献   

11.
We apply the periodic orbit expansion to the calculation of transport, thermodynamic, and chaotic properties of the finite-horizon triangular Lorentz gas. We show numerically that the inverse of the normalized Lyapunov number is a good estimate of the probability of an individual periodic orbit. We investigate the convergence of the periodic orbit expansion and compare it with the convergence of the cycle expansions obtained from the Ruelle dynamical -function. For this system with severe pruning we find that applying standard convergence acceleration schemes to the periodic orbit expansion is superior to the dynamical -function approach. The averages obtained from the periodic orbit expansion are within 8% of the values obtained from direct numerical time and ensemble averaging. None of the periodic orbit expansions used here is computationally competitive with the standard simulation approaches for calculating averages. However, we believe that these expansion methods are of fundamental importance, because they give a direct route to the phase space distribution function.  相似文献   

12.
The nature of the few particle wavefunctions for neutral and positively charged excitons is probed in individual InGaAs quantum dots using Stark-effect perturbation spectroscopy. A systematic reduction of the vertical component of the permanent excitonic dipole (pz) is observed as additional holes are added to the dot. A comparison with calculations reveals that this reduction (Δpz/e15–20%) is accompanied by a significant lateral expansion of the hole (2 nm) and contraction (1 nm) of the electron wavefunctions. We suggest that this lateral redistribution of the charged exciton wavefunctions provides an optical means to probe the lateral composition profile of the dot.  相似文献   

13.
We consider a class of simple quasi-one-dimensional classically nonintegrable systems that capture the essence of the periodic orbit structure of general hyperbolic nonintegrable dynamical systems. Their behavior is sufficiently simple to allow a detailed investigation of both classical and quantum regimes. Despite their classical chaoticity, these systems exhibit a “nonintegrable analogue” of the Einstein-Brillouin-Keller quantization formula that provides their spectra explicitly, state by state, by means of convergent periodic orbit expansions.  相似文献   

14.
15.
We show that enhanced wave function localization due to the presence of short unstable orbits and strong scarring can rely on completely different mechanisms. Specifically we find that in quantum networks the shortest and most stable orbits do not support visible scars, although they are responsible for enhanced localization in the majority of the eigenstates. Scarring orbits are selected by a criterion which does not involve the classical stability. We obtain predictions for the energies of visible scars and the distributions of scarring strengths and inverse participation numbers.  相似文献   

16.
ABSTRACT

The thermal metal-insulator phase transition in the π-stacked (EDO-TTF)2PF6 charge transfer salt is of the Peierls type. It is related to geometrical reorganisations and charge ordering phenomena. We report that dimerising displacements are involved in the mechanism of this transition. By using periodic quantum chemical calculations, we find a double well potential in which dimerisation and charge localisation become manifest. By analysing the nuclear wavefunctions we discuss the mechanism of the phase transition in terms of thermal fluctuations.  相似文献   

17.
《Physics letters. A》2014,378(30-31):2280-2284
The local magnetism induced by vacancies in the presence of the spin–orbit interaction is investigated based on the half-filled Kane–Mele–Hubbard model on the honeycomb lattice. Using a self-consistent mean-field theory, we find that the spin–orbit coupling will enhance the localization of the spin moments near a single vacancy. We further study the magnetic structures along the zigzag edges formed by a chain of vacancies. We find that the spin–orbit coupling tends to suppress the counter-polarized ferrimagnetic order on the upper and lower edges, because of the open of the spin–orbit gap. As a result, in the case of the balance number of sublattices, it will suppress completely this kind of ferrimagnetic order. But, for the imbalance case, a ferrimagnetic order along both edges exists because additional zero modes will not be affected by the spin–orbit coupling.  相似文献   

18.
The distribution of tunneling rates in the presence of classical chaos is derived. We use classical information about tunneling trajectories plus random matrix theory arguments about wave function overlaps. The distribution depends on the stability of a specific tunneling orbit and is not universal, though it does reduce to the universal Porter-Thomas form when the orbit is very unstable. For some situations there may be systematic deviations due to scarring of real periodic orbits. The theory is tested in a model problem and possible experimental realizations are discussed.  相似文献   

19.
Z. Oztas 《Physics letters. A》2019,383(6):504-508
We numerically investigate the localization of Bose Einstein condensate (BEC) with spin orbit coupling in a two dimensional bichromatic optical lattice. We study localization in weakly interacting and non-interacting regimes. The existence of stationary localized states in the presence of spin–orbit and Rabi couplings has been confirmed. We find that spin orbit coupling favors localization, whereas Rabi coupling has a slight delocalization effect.  相似文献   

20.
We refute an often invoked theorem which claims that a periodic orbit with an odd number of real Floquet multipliers greater than unity can never be stabilized by time-delayed feedback control in the form proposed by Pyragas. Using a generic normal form, we demonstrate that the unstable periodic orbit generated by a subcritical Hopf bifurcation, which has a single real unstable Floquet multiplier, can in fact be stabilized. We derive explicit analytical conditions for the control matrix in terms of the amplitude and the phase of the feedback control gain, and present a numerical example. Our results are of relevance for a wide range of systems in physics, chemistry, technology, and life sciences, where subcritical Hopf bifurcations occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号