首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the infrared spectra of HCl, (HCl)2, and H2O-HCl in liquid helium nanodroplets in the frequency region between 2680 and 2915 cm(-1). For the HCl monomer a line width of 1.0 cm(-1) (H35Cl) corresponding to a lifetime of 5.3 ps was observed. The line broadening indicates fast rotational relaxation similar to that previously observed for HF. For (HCl)2 the free HCl as well as the bound HCl stretching band has been observed. The nu2+ bands of (HCl)2 could be rotationally resolved, and rotational constants were deduced from the spectra. We observed both the allowed and the symmetry forbidden transition. However, the forbidden "broken symmetry" tunneling transition of the mixed dimer shows an intensity that is considerably enhanced compared to the gas phase. Upon the basis of the present measurements we were able to calculate the tunneling splitting in the excited state. The tunneling splitting is found to be reduced by 28% compared to the gas phase. Transitions from the ground state to the Ka=1 level of the free HCl stretch (nu1) are recorded and show considerable line broadening with a line width of 2 cm(-1). The excited state Ka=1 has an additional rotational energy of about 10 cm(-1), thereby allowing fast rotational relaxation by coupling to helium excitations. In addition we observed the HCl stretch of the HCl-H2O dimer, which exhibits an unusually large width (1.7 cm(-1) for H35Cl)) and large red shift (8.5 cm(-1)), compared to the gas-phase values. The large-amplitude motion originating from the libration mode of the HCl-H2O complex is supposed to act as a fast relaxation manifold.  相似文献   

2.
The electron ionization of helium droplets doped with methane clusters is investigated for the first time using high-resolution mass spectrometry. The dominant ion products ejected into the gas phase are the unprotonated (CH(4))(n)(+) cluster ions along with the protonated ions, CH(5)(+)(CH(4))(n-1). The mass spectra show clear evidence for magic numbers, which are broadly consistent with icosahedral shell closings. However, unusual features were observed, including different magic numbers for CH(5)(+)(CH(4))(n-1) (n=55, 148) when compared to (CH(4))(n)(+) (n=54, 147). Possible interpretations for some of these differences are proposed. Products of the type [C(2)H(x)(CH(4))(n)](+), which result from ion-molecule chemistry, are also observed and these too show clear magic number features. Finally, we report the first observation of (CH(4))(n)(2+) dications from methane clusters. The threshold for dication survival occurs at n≥70 and is in good agreement with a liquid droplet model for fission of multiply charged ions. Furthermore, we present evidence showing that these dications are formed by an unusual two-step mechanism which is initiated by charge transfer to generate a monocation and is then followed by Penning ionization to generate a dication.  相似文献   

3.
Infrared laser spectroscopy has been used to characterize imidazole (IM), imidazole dimer (IMD), and imidazole-water (IMW) binary systems formed in helium nanodroplets. The experimental results are compared with ab initio calculations reported here. Vibrational transition moment angles provide conclusive assignments for the various complexes studied here, including IM, one isomer of IMD, and two isomers of the IMW binary complexes.  相似文献   

4.
Electron impact (EI) mass spectra of a selection of C1-C3 haloalkanes in helium nanodroplets have been recorded to determine if the helium solvent can significantly reduce molecular ion fragmentation. Haloalkanes were chosen for investigation because their EI mass spectra in the gas phase show extensive ion fragmentation. There is no evidence of any major softening effect in large helium droplets ( approximately 60 000 helium atoms), but some branching ratios are altered. In particular, channels requiring C-C bond fission or concerted processes leading to the ejection of hydrogen halide molecules are suppressed by helium solvation. Rapid cooling by the helium is not sufficient to account for all the differences between the helium droplet and gas phase mass spectra. It is also suggested that the formation of a solid "snowball" of helium around the molecular ion introduces a cage effect, which enhances those fragmentation channels that require minimal disruption to the helium cage for products to escape.  相似文献   

5.
A study has been made of the ion chemistry of a series of small molecules that have been embedded in helium nanodroplets. In most instances, the molecules H2O, SO2, CO2, CH3OH, C2H5OH, C3H7OH, CH3F, and CH3Cl have been allowed to form clusters, and reactivity within these has been initiated through electron impact ionization. For two of the molecules studied, CF2Cl2 and CF3I, reactivity is believed to originate from single molecules embedded in the droplets. Electron impact on the droplets is thought to first create a helium ion, and formation of molecular ions is then assumed to proceed via a charge hopping mechanism that propagates though the droplet and terminates with charge-transfer to a molecule or cluster. The chemistry exhibited by many of the cluster ions and at least one of the single molecular ions is very different from that observed for the same species in isolation. In most cases, reactivity appears to be dominated by high-energy bond breaking processes as opposed to, in the case of the clusters, ion-molecule reactions. Overall, charge-transfer from He+ does not appear to be a "soft" ionization mechanism.  相似文献   

6.
The infrared spectroscopy of molecules, complexes, and molecular aggregates dissolved in superfluid helium clusters, commonly called HElium NanoDroplet Isolation (HENDI) spectroscopy, is an established, powerful experimental technique for extracting high resolution ro-vibrational spectra at ultra-low temperatures. Realistic quantum simulations of such systems, in particular in cases where the solute is undergoing a chemical reaction, require accurate solute-helium potentials which are also simple enough to be efficiently evaluated over the vast number of steps required in typical Monte Carlo or molecular dynamics sampling. This precludes using global potential energy surfaces as often parameterized for small complexes in the realm of high-resolution spectroscopic investigations that, in view of the computational effort imposed, are focused on the intermolecular interaction of rigid molecules with helium. Simple Lennard-Jones-like pair potentials, on the other hand, fall short in providing the required flexibility and accuracy in order to account for chemical reactions of the solute molecule. Here, a general scheme of constructing sufficiently accurate site-site potentials for use in typical quantum simulations is presented. This scheme employs atom-based grids, accounts for local and global minima, and is applied to the special case of a HCl(H(2)O)(4) cluster solvated by helium. As a first step, accurate interaction energies of a helium atom with a set of representative configurations sampled from a trajectory following the dissociation of the HCl(H(2)O)(4) cluster were computed using an efficient combination of density functional theory and symmetry-adapted perturbation theory, i.e. the DFT-SAPT approach. For each of the sampled cluster configurations, a helium atom was placed at several hundred positions distributed in space, leading to an overall number of about 400,000 such quantum chemical calculations. The resulting total interaction energies, decomposed into several energetic contributions, served to fit a site-site potential, where the sites are located at the atomic positions and, additionally, pseudo-sites are distributed along the lines joining pairs of atom sites within the molecular cluster. This approach ensures that this solute-helium potential is able to describe both undissociated molecular and dissociated (zwitter-) ionic configurations, as well as the interconnecting reaction pathway without re-adjusting partial charges or other parameters depending on the particular configuration. Test calculations of the larger HCl(H(2)O)(5) cluster interacting with helium demonstrate the transferability of the derived site-site potential. This specific potential can be readily used in quantum simulations of such HCl/water clusters in bulk helium or helium nanodroplets, whereas the underlying construction procedure can be generalized to other molecular solutes in other atomic solvents such as those encountered in rare gas matrix isolation spectroscopy.  相似文献   

7.
Excitation spectra up to the ionization threshold are reported for barium atoms located on the surface of helium nanodroplets. For states with low principal quantum number, the resonances are substantially broadened and shifted towards higher energy with respect to the gas phase. This has been attributed to the repulsive interaction of the excited atom with the helium at the Franck-Condon region. In contrast, for states with high principal quantum number the resonances are narrower and shifted towards lower energies. Photoelectron and ZEKE spectroscopy reveal that the redshift results from a lowering of the ionization threshold due to polarization of the helium by the barium ionic core. As a result of the repulsive interaction with the helium, excited barium atoms desorb from the surface of the droplets. Only when excited to the 6s6p (1)P(1) state, which reveals an attractive interaction with the helium, the atoms remain attached to the droplets.  相似文献   

8.
High resolution IR spectra of aniline, styrene, and 1,1-diphenylethylene cations embedded in superfluid helium nanodroplets have been recorded in the 300-1700 cm(-1) range using a free-electron laser as radiation source. Comparison of the spectra with available gas phase data reveals that the helium environment induces no significant matrix shift nor leads to an observable line broadening of the resonances. In addition, the IR spectra have provided new and improved vibrational transition frequencies for the cations investigated, as well as for neutral aniline and styrene. Indications have been found that the ions desolvate from the droplets after excitation by a non-evaporative process in which they are ejected from the helium droplets. The kinetic energy of the ejected ions is found to be ion specific and to depend only weakly on the excitation energy.  相似文献   

9.
Cesium oligomers are formed on helium nanodroplets which are doped with one or a few Cs atoms. The monomer absorption of the first electronic p<--s transition upon laser excitation is probed. Spectra employing laser-induced fluorescence, beam depletion, and resonant photoionization are compared. In particular, mass-resolved photoionization allows us to specifically probe excitation induced processes such as, e.g., the formation of cesium-helium exciplexes. Absorption spectra of Cs dimers and trimers are recorded in the spectral region accessible by a Ti:sapphire laser. Assignment of dimer spectra is achieved by comparison with model calculations based on ab initio potentials. Electronic absorption lines of Cs trimers are attributed to transitions in the quartet manifold.  相似文献   

10.
We have recorded the S1 <-- S0 electronic spectra of Biphenylene and its Ar and O2 van der Waals complexes inside helium nanodroplets using beam depletion detection. In general, the spectrum is similar to the previously reported high-resolution REMPI spectrum. The zero phonon lines, however, are split similar to the previously reported tetracene case. The calculated potential energy surface predicts that helium atoms can simultaneously occupy all equivalent global minima positions. Therefore, it appears that the splitting cannot be explained either by different isomers or by tunneling. Furthermore, surprisingly the splitting is retained for the Ar van der Waals complexes (and possibly for the O2 complex as well). This case suggests that the current models of the origin of zero phonon line splitting and the helium solvation are incomplete.  相似文献   

11.
Rotationally resolved infrared spectra are reported for the asymmetric C-H stretching fundamental bands of C(2)H(4) in helium nanodroplets, as well as two weak combination bands. The J=2 rotor levels are strongly shifted from the energies estimated from a rigid rotor calculation and can be accounted for with two centrifugal distortion constants. The excited states of the three bands with B(3u) symmetry are strongly coupled in the gas phase and exhibit lifetimes >100 ps in helium, with the upper member of the polyad exhibiting the shortest lifetime. In contrast, the nu(9) band (B(2u) symmetry) exhibits very broad, homogeneously broadened line profiles (full width at half maximum approximately 0.5 cm(-1)) corresponding to an excited state lifetime of approximately 10 ps. This short lifetime is presumed to be due to an efficient, solvent mediated vibration-to-vibration relaxation process. In addition, the absence of transitions to the 2(21) and 2(20) rotor levels in the nu(9) band suggests they form rotational resonances with the elementary modes of helium, resulting in very short excited state lifetimes of less than 2 ps.  相似文献   

12.
Electronic spectra of the S1<--S0 transition of the 3,4,9,10-perylenetetracarboxylic-dianhydrid (PTCDA) monomer isolated in superfluid helium nanodroplets have been measured by means of laser-induced fluorescence. The 0(0)(0) transition appears at 20,988 cm(-1) as the dominant line. We obtain clearly resolved the vibrational structure of the molecule. A comparison to Raman spectra of PTCDA films on metallic substrates and PTCDA crystals as well as with calculated frequencies provides the identification of the different modes. The enhanced resolution in the low temperature helium environment and the obtained line positions provide new information about structural properties of perylene derivatives.  相似文献   

13.
Core-shell particles with water clusters as the core and surrounded by an atomic or molecular shell have been synthesized for the first time by adding water and a co-dopant sequentially to helium nanodroplets. The co-dopants chosen for investigation were Ar, O(2), N(2), CO, CO(2), NO and C(6)D(6). These co-dopants have been used to investigate the effect of an outer shell on the ionization of the core material by charge transfer in helium nanodroplets. The specific aim was to determine how the identity of the shell material affects the fragmentation of water cluster ions, i.e. whether it helps to stabilize parent ion ((H(2)O)(n)(+)) formation or increases fragmentation (to form (H(2)O)(n)H(+)). N(2), O(2), CO(2) and C(6)D(6) all show a marked softening effect, which is consistent with the formation of a protective shell around the water cluster core. For CO and NO co-dopants, the response is complicated by secondary reactions which actually favour water cluster ion fragmentation for some water cluster sizes.  相似文献   

14.
The excited state dynamics of silver atoms embedded in helium nanodroplets have been investigated by a variety of spectroscopic techniques. The experiments reveal that 5p 2P1/2 <-- 5s 2S1/2 excitation of embedded silver atoms results almost exclusively in the ejection of silver atoms populating the 2P1/2 state. In contrast, excitation to the 5p 2P3/2 state leads to the ejection of not only silver atoms in the 2P1/2, 2P3/2, and 2D5/2 excited states but also of AgHe and AgHe2. These AgHe exciplexes are mainly formed in the A2Pi1/2 electronic state. In addition, it is found that a considerable fraction of the 2P3/2 excited silver atoms become solvated within the helium droplets, most probably as AgHe2. The observations can be accounted for by a model in which the metastable 2D5/2 state of silver acts as a doorway state in the relaxation of 2P3/2 excited silver atoms.  相似文献   

15.
Photoionization and photofragmentation of SF6 in helium nanodroplets   总被引:1,自引:0,他引:1  
The photoionization of He droplets doped with SF6 was investigated using tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source (ALS). The resulting ionization and photofragmentation dynamics were characterized using time-of-flight mass spectrometry combined with photofragment and photoelectron imaging. Results are compared to those of gas-phase SF6 molecules. We find dissociative photoionization to SF5+ to be the dominant channel, in agreement with previous results. Key new findings are that (a) the photoelectron spectrum of the SF6 in the droplet is similar but not identical to that of the gas-phase species, (b) the SF5+ photofragment velocity distribution is considerably slower upon droplet photoionization, and (c) fragmentation to SF4+ and SF3+ is much less than in the photoionization of bare SF6. From these measurements we obtain new insights into the mechanism of SF6 photoionization within the droplet and the cooling of the hot photofragment ions produced by dissociative photoionization.  相似文献   

16.
17.
We present results of a combined theoretical and experimental study on the vibrational predissociation of the HCl dimer. On the theoretical side, photodissociation linewidths and product-state distributions for monomer stretch excited states with total angular momentum J=0 were computed, using the Fermi golden rule approximation. The resonances investigated include excitation of the hydrogen bond donor and acceptor stretches, as well as combinations of one of these modes with the intermolecular stretch and geared bend modes, for both even and odd permutation symmetry. Line strengths for the transitions from the J=1, K=0 ground state to excited states with J=0 were computed using quasibound states. On the experimental side, the photofragment angular distribution method was employed to obtain complete final-state distributions for the monomer stretch excited states. Three different transitions were probed, all starting from the lower tunneling component of the ground state: the (R)Q(0)(1) transition for excitation of the acceptor stretch and the (Q)R(0)(0) transition and unresolved (R)Q(0) branch for the donor stretch excitation. We find that, in contrast to the HF dimer, the excited-state alignment of the HCl dimer, resulting from excitation using a polarized laser beam, is completely lost on the time scale of the dissociation. The agreement between theory and experiment for the product-state distributions and line strengths is reasonable. The computed lifetimes are 1-2 orders of magnitude too small, which is attributed to a deficiency in the potential energy surface.  相似文献   

18.
We have recorded the electronic spectra of three polycyclic aromatic hydrocarbons (acenaphtylene, fluoranthene, and benzo(k)fluoranthene) containing a five-member ring and their van der Waals complexes with argon and oxygen with a molecular beam superfluid helium nanodroplet spectrometer. Although the molecules, which differ by addition of one or two fused benzene rings to acenaphtylene, have the same point group symmetry, the spectral lineshapes show distinct differences in the number of zero phonon lines and shapes of the phonon wings. Whereas the smallest molecule (acenaphtylene) has the most complicated line shape, the largest molecule (benzo(k)fluoranthene) shows different lineshapes for different vibronic transitions. The van der Waals complexes of fluoranthene exhibit more peaks than the theoretically allowed number of isomeric complexes with argon/oxygen. The current models of molecular solvation in liquid helium do not adequately explain these discrepancies.  相似文献   

19.
Infrared-infrared double resonance spectroscopy is used as a probe of the vibrational dynamics of cyanoacetylene in helium droplets. The nu1 C-H stretching vibration of cyanoacetylene is excited by an infrared laser and subsequent vibrational relaxation results in the evaporation of approximately 660 helium atoms from the droplet. A second probe laser is then used to excite the same C-H stretching vibration downstream of the pump, corresponding to a time delay of approximately 175 micros. The hole burned by the pump laser is narrower than the single resonance spectrum, owing to the fact that the latter is inhomogeneously broadened by the droplet size distribution. The line width of the hole is characteristic of another broadening source that depends strongly on droplet size.  相似文献   

20.
Oligomers of the organic semiconductor 3,4,9,10-perylene-tetracarboxylic-dianhydride, C(24)H(8)O(6) (PTCDA) are studied by means of helium nanodroplet isolation spectroscopy. In contrast to the monomer absorption spectrum, which exhibits clearly separated, very sharp absorption lines, it is found that the oligomer spectrum consists of three main peaks having an apparent width orders of magnitude larger than the width of the monomer lines. Using a simple theoretical model for the oligomer, in which a Frenkel exciton couples to internal vibrational modes of the monomers, these experimental findings are nicely reproduced. The three peaks present in the oligomer spectrum can already be obtained taking only one effective vibrational mode of the PTCDA molecule into account. The inclusion of more vibrational modes leads to quasicontinuous spectra, resembling the broad oligomer spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号