首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auditory evoked cortical responses to changes in the interaural phase difference (IPD) were recorded using magnetoencephalography (MEG). Twelve normal-hearing young adults were tested with amplitude-modulated tones with carrier frequencies of 500, 1000, 1250, and 1500 Hz. The onset of the stimuli evoked P1m-N1m-P2m cortical responses, as did the changes in the interaural phase. Significant responses to IPD changes were identified at 500 and 1000 Hz in all subjects and at 1250 Hz in nine subjects, whereas responses were absent in all subjects at 1500 Hz, indicating a group mean threshold for detecting IPDs of 1250 Hz. Behavioral thresholds were found at 1200 Hz using an adaptive two alternative forced choice procedure. Because the physiological responses require phase information, through synchronous bilateral inputs at the level of the auditory brainstem, physiological "change" detection thresholds likely reflect the upper limit of phase synchronous activity in the brainstem. The procedure has potential applications in investigating impaired binaural processing because phase statistic applied to single epoch MEG data allowed individual thresholds to be obtained.  相似文献   

2.
In assigning binaural ongoing time differences (phase) as the cue for localization of low frequencies, and binaural intensity differences as the cue for localization of high frequencies, the duplex theory has successfully accounted for human directional hearing of tones. Sensitivity of monkeys to these cues was examined in two experiments. The dependencies on frequency of interaural intensity difference thresholds (lateralization experiment I) and time difference thresholds (lateralization experiment II) were determined behaviorally on three monkeys (M. nemestrina). The range of frequencies was from 125 Hz to 8 kHz in experiment I and from 250 Hz to 2 kHz in experiment II. The results indicate that the duplex theory is applicable to monkeys. However, monkeys are less sensitive than man to both binaural cues. The shortest time disparity monkeys discriminate is 42 microseconds at 1.5 kHz and the smallest intensity difference is 3.5 dB at 500 Hz. Good agreement between the present findings and localization measurements [C. H. Brown et al., J. Acoust. Soc. Am. 63, 1484-1492 (1978)] suggests: (a) that monkeys utilize time disparity cues through higher frequencies than man; and (b) that inaccurate localization by monkeys at high frequencies reflects decreasing sensitivity to interaural intensity cues.  相似文献   

3.
Sensitivity to temporal fine structure (TFS) at low frequencies may be adversely affected by hearing loss at high frequencies even when absolute thresholds at low frequencies are within the normal range. However, in several studies suggesting this, the effects of hearing loss and age were confounded. Here, interaural phase discrimination (IPD) thresholds for pure tones at 500 and 750 Hz were measured for 39 subjects with ages from 61 to 83 yr. All subjects had near-normal audiometric thresholds at low frequencies, but thresholds varied across subjects at high frequencies. IPD thresholds were correlated with age. IPD thresholds for the test frequency of 750 Hz were weakly correlated with absolute thresholds at high frequencies, but these correlations became non-significant when the effect of age was partialed out. The results do not confirm that sensitivity to TFS at low frequencies is influenced by hearing loss at high frequencies, independently of age.  相似文献   

4.
Either an interaural phase shift or level difference was introduced to a narrow section of broadband noise in order to measure the acuity of the binaural system to segregate a narrowband from a broadband stimulus. Listeners were asked to indicate whether this dichotic noise or a totally diotic noise was presented in a single-interval procedure. Thresholds for interaural phase and level differences were estimated from four point psychometric functions. These thresholds were determined for three bandwidths of interaurally altered noise (2, 10, and 100 Hz) centered at four center frequencies (200, 500, 1000, and 1600 Hz). Thresholds were lowest when the interaurally altered band of noise was centered at 500 Hz, and thresholds increased as the bandwidth of the interaurally altered noise decreased. Performance did not exceed 75% correct when either an interaural phase shift (180 degrees) or interaural level difference (50 dB) was introduced to a 100 Hz band of noise centered at frequencies higher than 1600 Hz. In a second set of conditions, performance was measured when both an interaural phase shift and level difference were presented in a 10-Hz-wide band of noise centered at 500 Hz. A version of the Durlach E-C model was able to account for a great deal of the data. The results are discussed in terms of the Huggins dichotic pitch.  相似文献   

5.
This study examined whether the level effects seen in monaural intensity discrimination (Weber's law and the "near miss") in a two-interval task are also observed in discrimination of interaural intensity differences (IIDs) in a single-interval task. Both tasks were performed for various standard levels of 4-kHz pure tones and broadband noise. The Weber functions (10 log deltaI/I versus I in dB) in the monaural and binaural conditions were parallel. For noise, the Weber functions had slopes close to zero (Weber's law) while the Weber functions for the tones had a mean slope of -0.089 (near miss). The near miss for the monaural and binaural tasks with tones was eliminated when a high-pass masker was gated with the listening intervals. The near-miss was also observed for 250- and 1000-Hz tones in the binaural task despite overall decreased sensitivity to changes in IID at 1000 Hz. The binaural thresholds showed a small (about 2-dB) advantage over monaural thresholds only in the broadband noise conditions. More important, however, is the fact that the level effects seen monaurally are also seen binaurally. This suggests that the basic mechanisms responsible for Weber's law and the near miss are common to monaural and binaural processing.  相似文献   

6.
Discrimination of interaural differences of level (IDLs) was measured for pure tones as a function of frequency and as a function of the interaural difference of phase or level of a standard. Varying the interaural difference of the standard was assumed to change the lateral position of its intracranial image. Threshold IDLs were approximately constant over a frequency range from 200-5000 Hz, except in a region near 1000 Hz where they were slightly elevated. Thresholds increased as the value of the standard interaural differences of phase or level increased, implying that interaural resolution declines as the lateral image moves away from midline. The results are generally consistent with the predictions of current models of lateralization, but additions to these models are required in order for them to account for the slight frequency dependence of threshold IDLs.  相似文献   

7.
Binaural performance was measured as a function of stimulus frequency for four impaired listeners, each with bilaterally symmetric audiograms. The subjects had various degrees and configurations of audiometric losses: two had high-frequency, sensorineural losses; one had a flat sensorineural loss; and one had multiple sclerosis with normal audiometric thresholds. Just noticeable differences (jnd's) in interaural time, interaural intensity, and interaural correlation as well as detection thresholds for NoSo and NoS pi conditions were obtained for narrow-band noise stimuli at octave frequencies from 250-4000 Hz. Performance of the impaired listeners was generally poorer than that of normal-hearing listeners, although it was comparable to normal in a few instances. The patterns of binaural performance showed no apparent relation to the audiometric patterns; even the two subjects with similar degree and configuration of hearing loss have very different binaural performance, both in the level and frequency dependence of their performance. The frequency dependence of performance on individual tests is irregular enough that one cannot confidently interpolate between octaves. In addition, it appears that no subset of the measurements is adequate to characterize the performance in the rest of the measurements with the exception that, within limits, interaural correlation discrimination and NoS pi detection performance are related.  相似文献   

8.
Just-noticeable differences (jnds) of both interaural time delay (ITD) and interaural intensity difference (IID) were measured for binaural tones in the presence of broadband maskers. The tones were presented at 50 dB SPL, the target frequency was 500 Hz, and the masker frequency was 100-1000 Hz, with various combinations of ITD and IID. The time and amplitude jnds exhibit similar dependencies on target-to-masker ratio and masker type. At a given target-to-masker ratio, discrimination was generally best in the presence of diotic maskers and worst in the presence of the interaurally out-of-phase maskers. Results for the other masker types examined tended to fall in between these two extremes. Many of these data trends are consistent with predictions of the lateralization model and the position-variable model based on auditory-nerve activity.  相似文献   

9.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

10.
Temporal modulation transfer functions were obtained using sinusoidal carriers for four normally hearing subjects and three subjects with mild to moderate cochlear hearing loss. Carrier frequencies were 1000, 2000 and 5000 Hz, and modulation frequencies ranged from 10 to 640 Hz in one-octave steps. The normally hearing subjects were tested using levels of 30 and 80 dB SPL. For the higher level, modulation detection thresholds varied only slightly with modulation frequency for frequencies up to 80 Hz, but decreased for high modulation frequencies. The decrease can be attributed to the detection of spectral sidebands. For the lower level, thresholds varied little with modulation frequency for all three carrier frequencies. The absence of a decrease in the threshold for large modulation frequencies can be explained by the low sensation level of the spectral sidebands. The hearing-impaired subjects were tested at 80 dB SPL, except for two cases where the absolute threshold at the carrier frequency was greater than 70 dB SPL; in these cases a level of 90 dB was used. The results were consistent with the idea that spectral sidebands were less detectable for the hearing-impaired than for the normally hearing subjects. For the two lower carrier frequencies, there were no large decreases in threshold with increasing modulation frequency, and where decreases did occur, this happened only between 320 and 640 Hz. For the 5000-Hz carrier, thresholds were roughly constant for modulation frequencies from 10 to 80 or 160 Hz, and then increased monotonically, becoming unmeasurable at 640 Hz. The results for this carrier may reflect "pure" effects of temporal resolution, without any influence from the detection of spectral sidebands. The results suggest that temporal resolution for deterministic stimuli is similar for normally hearing and hearing-impaired listeners.  相似文献   

11.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

12.
An adaptive forced-choice procedure was used to measure, in four normal-hearing subjects, detection thresholds for sinusoidal frequency modulation as a function of carrier frequency (fc, from 250 to 4000 Hz) and modulation frequency (fmod. from 1 to 64 Hz). The results show that, for a wide range of fmod values, fc and fmod have almost independent effects on the thresholds when the thresholds are expressed as just-noticeable frequency swings and plotted on a log scale. In two subjects, the effect of fc on the thresholds was compared to the effect of standard frequency on the frequency just noticeable differences (jnd's) of successive and steady tones. In agreement with previous data [H. Fastl, J. Acoust. Soc. Am. 63, 275-277 (1978)], it was found that the two effects are significantly different if the frequency jnd's are measured with long-duration tones. However, it was also found that the two effects are similar if the frequency jnd's are measured with 25-ms tones. These results support the idea that, at least for low fmod values, the detection of continuous and periodic frequency modulations is mediated by a pitch-sampling process using a temporal window of about 25 ms.  相似文献   

13.
The shape of the auditory filter was calculated from binaural masking experiments. Two different types of maskers were used in the study, a masker that was interaurally in phase at all frequencies (No), and a masker with an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The test-signal frequency varied between 200 and 800 Hz, and the test signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). By comparing the masked thresholds from the two experimental conditions, the following conclusion can be drawn: The threshold of the test signal is only affected by the masker phase within a narrow frequency range around the test frequency. Thus, for test-signal frequencies well above or below 500 Hz, no influence of the phase transition on the BMLD is observed, and normal masked thresholds for No and N pi maskers are obtained. For test frequencies around 500 Hz, the step in interaural phase difference leads to a decrease in the interaural correlation of the masker within the critical band around the test-signal frequency. This results in strong threshold changes for both monaural and binaural signals. A calculation of the auditory filter shape from the masked threshold values was performed under the assumption that the masked threshold is only dependent on the interaural cross correlation of the masker within the filter band. Using the formula of the EC theory for the relation between masker correlation and BMLD, the experimental data are well described by a trapezoidal filter with an equivalent rectangular bandwidth of 80 to 84 Hz.  相似文献   

14.
An experiment was conducted to measure observers' ability to detect time-varying interaural intensity differences (IIDs). In a two-interval forced-choice task, observers discriminated a binaural amplitude modulated (AM) noise in which the modulating sinusoid was interaurally in-phase from the same AM noise in which the modulator was interaurally phase-reversed. The latter stimulus produces a sinusoidally varying IID whose rate and peak IID depend on the frequency (fm) and depth (m) of modulation. The carrier was a narrow-band noise, interaurally uncorrelated, centered at 500, 1000, or 4000 Hz. Presentation level was 75 dB SPL; duration was 1.0 s. For a given fm, m was varied in an adaptive procedure to estimate the depth required for 71% discriminability (mthr). Three of the four observers displayed "low-pass" modulation functions: at 500 Hz, as fm increased from 0-50 Hz, mthr increased from 0.08 (IID = 1.3 dB) to 0.50 (peak IID = 9.5 dB). At 1000 and 4000 Hz observers were more sensitive to IID and the functions (mthr vs fm) were flatter than at 500 Hz. Comparison of these data to previously published data indicates that the binaural system can follow fluctuations in IID more efficiently than it can follow fluctuations in interaural time difference, although there are large individual differences in subjects' capacity to process these two types of binaural cues.  相似文献   

15.
Detection was measured for a 500 Hz tone masked by noise (an "energetic" masker) or sets of ten randomly drawn tones (an "informational" masker). Presenting the maskers diotically and the target tone with a variety of interaural differences (interaural amplitude ratios and/or interaural time delays) resulted in reduced detection thresholds relative to when the target was presented diotically ("binaural release from masking"). Thresholds observed when time and amplitude differences applied to the target were "reinforcing" (favored the same ear, resulting in a lateralized position for the target) were not significantly different from thresholds obtained when differences were "opposing" (favored opposite ears, resulting in a centered position for the target). This irrelevance of differences in the perceived location of the target is a classic result for energetic maskers but had not previously been shown for informational maskers. However, this parallellism between the patterns of binaural release for energetic and informational maskers was not accompanied by high correlations between the patterns for individual listeners, supporting the idea that the mechanisms for binaural release from energetic and informational masking are fundamentally different.  相似文献   

16.
A spectral discrimination task was used to estimate the frequency range over which information about the temporal envelope is consolidated. The standard consisted of n equal intensity, random phase sinusoids, symmetrically placed around a signal component. The signal was an intensity increment of the central sinusoid, which on average was 1000 Hz. Pitch cues were degraded by randomly selecting the center frequency of the complex and single channel energy cues were degraded with a roving-level procedure. Stimulus bandwidth was controlled by varying the number of tones and the frequency separation between tones. For a fixed frequency separation, thresholds increased as n increased until a certain bandwidth was reached, beyond which thresholds decreased. This discontinuity in threshold functions suggests that different auditory processes predominate at different bandwidths, presumably an envelope analysis at bandwidths less than the breakpoint and across channel level comparisons for wider stimulus bandwidths. Estimates of the "transition bandwidth" for 46 listeners ranged from 100 to 1250 Hz. The results are consistent with a peripheral filtering system having multiple filterbanks.  相似文献   

17.
Hearing thresholds for pure tones were measured under free-field listening conditions in the frequency range of 40 Hz-15 kHz. Results are consistent with the standard threshold specified in ISO 226 for frequencies up to 250 Hz, but a few dB below the ISO curve at higher frequencies. Thresholds are distributed normally on a logarithmic level scale with a standard deviation of approximately 5 dB. No significant differences between thresholds of male and female subjects were observed.  相似文献   

18.
Estimates of frequency discrimination for pulsed modulated tones were obtained by 11 observers at 350, 500, 1000, 4000, and 8000 Hz. At low frequencies, frequency DL's are larger for modulated than for pulsed tones; at 8000 Hz the contrary was found. Frequency DL's (difference limens) determined by different methods and procedures differed by a factor up to four; extreme individual frequency DL's, however, by a factor up to 27.  相似文献   

19.
Hearing thresholds were estimated in four bottlenose dolphins by measuring auditory evoked responses to single and multiple sinusoidal amplitude modulated tones. Subjects consisted of two males and two females with ages from 4 to 22 years. Testing was conducted in air using a "jawphone" transducer to couple sound into each subject's lower right jaw. Carrier frequencies ranged from 10 to 160 kHz in one-half octave steps. Amplitude modulated stimuli were presented individually and as the sum of four, five, and nine simultaneous tones with unique carrier and modulation frequencies. Evoked potentials were noninvasively recorded using surface electrodes embedded in silicon suction cups. The presence or absence of an evoked response at each modulation frequency was assessed by calculating the magnitude-squared coherence from the frequency spectra of the recorded sweeps. All subjects exhibited traditional "U-shaped" audiograms with upper cutoff frequencies above 113 kHz. The time required for threshold estimates ranged from 23 to 37 min for single stimuli to 5-9 min for nine simultaneous stimuli. Agreement between thresholds estimated from single stimuli and multiple, simultaneous stimuli was generally good, indicating that multiple stimuli may be used for quick hearing assessment when time is limited.  相似文献   

20.
The effect of apparent spatial location on sequential streaming was investigated by manipulating interaural time differences (ITDs). The degree of obligatory stream segregation was inferred indirectly from the threshold for detecting a rhythmic irregularity in an otherwise isochronous sequence of interleaved "A" and "B" tones. Stimuli were bandpass-filtered harmonic complexes with a 100-Hz fundamental. The A and B tones had equal but opposite ITDs of 0, 0.25, 0.5, 1, or 2 ms and had the same or different passbands. The passband ranges were 1250-2500 Hz and 1768-3536 Hz in experiment 1, and 353-707 Hz and 500-1000 Hz in experiment 2. In both experiments, increases in ITD led to increases in threshold, mainly when the passbands of A and B were the same. The effects were largest for ITDs above 0.5 ms, for which rhythmic irregularities in the timing of the A or B tones alone may have disrupted performance. It is concluded that the differences in apparent spatial location produced by ITD have only weak effects on obligatory streaming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号