首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
By applying the bifurcation theory of dynamical system to the generalized KP-BBM equation, the phase portraits of the travelling wave system are obtained. It can be shown that singular straight line in the travelling wave system is the reason why smooth periodic waves converge to periodic cusp waves. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are obtained.   相似文献   

2.
In this paper, we study the bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation by using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space. Then we show the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, compactions and kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions and periodic wave solutions are implicitly given,while the expressions of kink-like and antikink-like wave solutions are explicitly shown. The dynamics of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of the nonlinear wave.  相似文献   

3.
《Physics letters. A》2005,334(4):273-287
In this Letter, for a general class of delayed periodic Lotka–Volterra systems, we prove some new results on the existence of positive periodic solutions by Schauder's fixed point theorem. The global asymptotical stability of positive periodic solutions is discussed further, and conditions for exponential convergence are given. The conditions we obtained are weaker than the previously known ones and can be easily reduced to several special cases.  相似文献   

4.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

5.
We report on the 3-D modelling of periodic arrays of capacitive micromachined ultrasonic transducers (cMUTs) operating in fluid. Specific developments have been performed to model biperiodic transducer arrays and to take into account radiation into any stratified media at the front-side as well as the back-side of the device. The model is based on a periodic finite-element-analysis/boundary-element-method (FEA/BEM). It is applied to micromachined ultrasonic transducers (MUTs), based on silicon-nitride-circular-membrane arrays on a silicon substrate, and operating in water. The spectrum characteristics of MUTs excited in phase are investigated, showing that very-large-band emission is achievable as previously demonstrated by many authors. However, other contributions are also found, depending on the excitation conditions, that do not radiate in the fluid. These contributions are identified as guided modes that could generate significant cross-talk effects. The origin and the nature of these modes is analyzed to gain insight in the actual operation of MUTs.  相似文献   

6.
We present a theoretical analysis of phase separation in the presence of a spatially periodic forcing of wavenumber q traveling with a velocity v. By an analytical and numerical study of a suitably generalized 2d-Cahn-Hilliard model we find as a function of the forcing amplitude and the velocity three different regimes of phase separation. For a sufficiently large forcing amplitude a spatially periodic phase separation of the forcing wavenumber takes place, which is dragged by the forcing with some phase delay. These locked solutions are only stable in a subrange of their existence and beyond their existence range the solutions are dragged irregularly during the initial transient period and otherwise rather regular. In the range of unstable locked solutions a coarsening dynamics similar to the unforced case takes place. For small and large values of the forcing wavenumber analytical approximations of the nonlinear solutions as well as for the range of existence and stability have been derived.  相似文献   

7.
We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the threedimensional parameter space. Then we show the required conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Moreover, we present exact expressions and simulations of these traveling wave solutions. The dynamical behaviors of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of nonlinear waves.  相似文献   

8.
In this paper, we study peakon, cuspon, smooth soliton and periodic cusp wave of the generalized Schrödinger-Boussinesq equations. Based on the method of dynamical systems, the generalized Schrödinger-Boussinesq equations are shown to have new the parametric representations of peakon, cuspon, smooth soliton and periodic cusp wave solutions. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.  相似文献   

9.
In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z_2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.  相似文献   

10.
The interaction of two steady state modes for the two-dimensional Benard problem with lateral periodic boundary conditions (p.b.c.) and free horizontal boundary conditions is considered. The p.b.c. generate an action of O(2) on the Navier-Stokes equations. The Boussinesq approximation induces an additional Z(2)-symmetry. The O(2) × Z(2) equivariant bifurcation equations are determined and two fifth order terms are identified. Two types of mixed mode solutions and a travelling wave solution are found. Using MACSYMA, the fifth order terms are calculated and the stability of the solutions to phase perturbations depending on the Prandtl number is determined.  相似文献   

11.
In this paper we consider a one-dimensional non-linear Schrödinger equation with a periodic potential. In the semiclassical limit we prove the existence of stationary solutions by means of the reduction of the non-linear Schrödinger equation to a discrete non-linear Schrödinger equation. In particular, in the limit of large nonlinearity strength the stationary solutions turn out to be localized on a single lattice site of the periodic potential. A connection of these results with the Mott insulator phase for Bose–Einstein condensates in a one-dimensional periodic lattice is also discussed.  相似文献   

12.
We consider the one-dimensional nonlinear Schrödinger equation with Dirichlet boundary conditions in the fully resonant case (absence of the mass term). We investigate conservation of small amplitude periodic solutions for a large measure set of frequencies. In particular we show that there are infinitely many periodic solutions which continue the linear ones involving an arbitrary number of resonant modes, provided the corresponding frequencies are large enough, say greater than a certain threshold value depending on the number of resonant modes. If the frequencies of the latter are close enough to such a threshold, then they can not be too distant from each other. Hence we can interpret such solutions as perturbations of wave packets with large wave number.  相似文献   

13.
The effect of coupling two chaotic Nd:YAG lasers with intracavity KTP crystal for frequency doubling is numerically studied for the case of the laser operating in three longitudinal modes. It is seen that the system goes from chaotic to periodic and then to steady state as the coupling constant is increased. The intensity time series and phase diagrams are drawn and the Lyapunov characteristic exponent is calculated to characterize the chaotic and periodic regions.  相似文献   

14.
We prove existence and regularity of the stochastic flows used in the stochastic Lagrangian formulation of the incompressible Navier-Stokes equations (with periodic boundary conditions), and consequently obtain a C k local existence result for the Navier-Stokes equations. Our estimates are independent of viscosity, allowing us to consider the inviscid limit. We show that as ν → 0, solutions of the stochastic Lagrangian formulation (with periodic boundary conditions) converge to solutions of the Euler equations at the rate of .  相似文献   

15.
The effect of collective modes on the otherwise local structure of Ising lattices is investigated by studying a number of exactly solvable models. First, the open one-dimensional Ising model serves to define sharp locality. This feature then remains upon extension to a Bethe lattice, despite the existence of a phase transition. But insertion of periodic boundary conditions creates a collective mode which breaks locality in a very specific fashion. A model interface is analyzed to show that even when locality is not broken, local uniformity can become untenable.  相似文献   

16.
In this paper,we study peakon,cuspon,smooth sohton and periodic cusp wave of the generalized Schrodinger-Boussinesq equations.Based on the method of dynamical systems,the generalized Schrodinger-Boussinesq equations are shown to have new the parametric representations of peakon,cuspon,smooth soliton and periodic cusp wave solutions.Under different parametric conditions,various sufficient conditions to guarantee the existence of the above solutions are given.  相似文献   

17.
Periodic oscillatory phenomena of bidirectional associative memory (BAM) networks with axonal signal transmission delays are investigated by constructing suitable Lyapunov functionals and some analysis techniques. Some simple sufficient conditions are derived ensuring the existence and uniqueness of periodic oscillatory solutions of the BAM with delays, and all other solutions of the BAM converge exponentially to a periodic oscillatory solution. These conditions are presented in terms of system parameters, and have an important leading significance in the design and applications of periodic oscillatory neural circuits for the BAM with delays.  相似文献   

18.
The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.  相似文献   

19.
We study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions which appear time periodic in a referential in translation at constant velocity. Approximate solutions of this type have been constructed in the form of modulated plane waves, whose envelopes satisfy the nonlinear Schrödinger equation (M. Remoissenet, Phys. Rev. B 33, n.4, 2386 (1986), J. Giannoulis and A. Mielke, Nonlinearity 17, p. 551–565 (2004)). In the case of travelling waves (where the phase velocity of the plane wave equals the group velocity of the wave packet), the existence of nearby exact solutions has been proved by Iooss and Kirchgässner, who have obtained exact solitary wave solutions superposed on an exponentially small oscillatory tail (G. Iooss, K. Kirchgässner, Commun. Math. Phys. 211, 439–464 (2000)). However, a rigorous existence result has been lacking in the more general case when phase and group velocities are different. This situation is examined in the present paper, in a case when the breather period and the inverse of its velocity are commensurate. We show that the center manifold reduction method introduced by Iooss and Kirchgässner is still applicable when the problem is formulated in an appropriate way. This allows us to reduce the problem locally to a finite dimensional reversible system of ordinary differential equations, whose principal part admits homoclinic solutions to quasi-periodic orbits under general conditions on the potential. For an even potential, using the additional symmetry of the system, we obtain homoclinic orbits to small periodic ones for the full reduced system. For the oscillator chain, these orbits correspond to exact small amplitude travelling breather solutions superposed on an exponentially small oscillatory tail. Their principal part (excluding the tail) coincides at leading order with the nonlinear Schrödinger approximation.  相似文献   

20.
The response of two-degree-of-freedom systems with quadratic non-linearities to a combination parametric resonance in the presence of two-to-one internal resonances is investigated. The method of multiple scales is used to construct a first order uniform expansion yielding four first order non-linear ordinary differential equations governing the modulation of the amplitudes and the phases of the two modes. Steady state responses and their stability are computed for selected values of the system parameters. The effects of detuning the internal resonance, detuning the parametric resonance, the phase and magnitude of the second mode parametric excitation, and the initial conditions are investigated. The first order perturbation solution predicts qualitatively the trivial and non-trivial stable steady state solutions and illustrates both the quenching and saturation phenomena. In addition to the steady state solutions, other periodic solutions are predicted by the perturbation amplitude and phase modulation equations. These equations predict a transition from constant steady state non-trivial responses to limit cycle responses (Hopf bifurcation). Some limit cycles are also shown to experience period doubling bifurcations. The perturbation solutions are verified by numerically integrating the governing differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号