首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
低速压气机叶栅附面层分离的实验研究   总被引:4,自引:0,他引:4  
本文利用表面热膜对某高负荷压气机叶片吸力面附面层的分离过程进行了实验研究,捕捉到了边界层分离点的位置及其随攻角的变化情况,给出了利用表面热膜测量的准壁面剪切应力米预判分离先兆和分离点位置的判据.同时,分析了 Re数对附面层分离特性的影响.结果表明:准壁面剪切应力及其均方根极小值对应的位置点是进入分离泡内的第一个测量点;在所有测量的工况条件下,表面热膜都捕捉到了吸力面附面层的长分离泡,并能准确捕捉到攻角所引起的分离点位置变化;低Re数下,Re数对附面层分离影响较小.  相似文献   

2.
3.
根部开槽对叶栅三维角区分离的控制研究   总被引:2,自引:0,他引:2  
三维角区分离是压气机静子叶栅中固有的流动结构,对压气机性能有着重要的影响。本文对一PVD叶栅和一NACA65叶栅,在分析其通道内流动机理的基础上,提出了在叶片根部从压力面向吸力面开槽的控制角区分离的方法。数值研究了槽道出口位置对PVD叶栅性能及角区分离的控制作用,发现在保持槽道其他参数不变的情况下,存在一最优位置使得叶栅攻角特性最优;结合计算及实验测量的方法,验证了NACA65叶栅中叶根开槽控制角区分离的有效性。两个叶栅研究结果表明:叶根开槽可有效控制角区分离,减小叶栅损失,增大叶栅扩压能力,拓宽叶栅可用攻角范围。  相似文献   

4.
采用数值模拟的方法,研究了合成射流对高负荷扩压叶栅分离流动的控制效果,分析了关键的控制参数激励频率、幅值和位置对控制效果的影响。结果表明,合成射流能够有效削弱高负荷扩压叶栅内的大尺度分离结构。激励频率与原流场的主分离涡脱落频率相近时控制效果占优。激励幅值存在较为明显的阈值,当激励幅值大于该阈值时控制效果较为显著。激励位置位于主分离涡起始位置附近时,控制效果较好。  相似文献   

5.
利用中国科学院工程热物理研究所和哈尔滨汽轮机厂合建的暂冲式超音速平面叶栅风洞,在详细校核进口流动均匀性、出口流动周期性及叶栅中部流动二元性的基础上,详细测试了三套超音速涡轮叶栅在设计和非设计等三个攻角状态下的气动性能及叶片表面压力分布,为超音速涡轮叶栅的后续研究积累了翔实的实验资料。  相似文献   

6.
三维跨音速叶栅自动气动优化设计   总被引:1,自引:0,他引:1  
应用三维叶栅自动设计参数化方法,选择E3约束的条件下进行了自动气动优化设计.优化后,最优叶栅的总压恢复系数比参考叶栅提高了0.8%,流量和出口气流角都在约束范围内.对优化结果的详细气动分析表明,叶栅性能有显著的改善,表明该算法具有良好的优化性能.  相似文献   

7.
非定常尾迹控制叶栅分离研究   总被引:1,自引:0,他引:1  
本文采用大涡模拟对某大转角叶栅的非定常分离流动及其在非定常尾迹作用下的分离控制机理进行了数值分析。主要捕捉了两个特征频率:分离泡不稳定频率fshear和尾缘脱落涡频率fshed,研究了不同的激励频率、尾迹移动方向、随机脉动等激励特征控制流动分离的效果。结果显示:特定外部频率强化了分离剪切层中的K-H展向涡结构,fshed能同时影响分离区域和尾涡区域,fshear只能作用于分离区域;尾迹从吸力面向压力面移动时,分离结构表现出对来流周期性更明显的响应;进口随机脉动对破坏K-H展向涡结构非常有效。  相似文献   

8.
过去研制一种新叶型需要做大量实验以确定其安装角、t/b(栅距/弦长)及出口几何角的使用范围,在可使用范围内还需要确定叶栅的攻角特性。这些在热力透平机械设计过程中是不可缺少的。随着计算机的发展及叶轮机械计算流体动力学的进步,人们已经可以通过主要是数值计算的方法来获得这些特性。本文给出了分析叶栅内二维流动特性的一种数值计算方祛。作者采用压力修正TVD格式解雷诺平均的N-S方程组,壁面的湍流效应利用低雷诺数湍流模型模拟。运用本文方法计算了跨音及亚音叶栅内的湍流流动,并获得了某新叶型的使用范围及攻角特性。  相似文献   

9.
为揭示端壁凹槽控制高速扩压叶栅角区分离、降低叶栅气动损失的物理机制,采用数值方法研究了高速扩压叶栅NACA65-K48附加具有不同轴向位置和横向长度的端壁凹槽时叶栅的流场结构和气动特性.结果 表明:叶栅出口总压损失系数最大降低8.08%,静压升约提高0.67%.近端壁气流在凹槽内部诱导出复杂旋涡结构,该旋涡结构反过来为...  相似文献   

10.
为了揭示等离子体激励调控低雷诺数压气机叶栅激波/附面层干扰的机理,本文选取典型超音速压气机预压缩叶型,利用大涡模拟研究了纳秒脉冲等离子体激励对低雷诺数下超音速压气机叶型附面层流动的调控作用。首先对低雷诺数工况下超音速压气机叶型流动特性和叶栅通道激波系结构进行了研究,以此设计了两种等离子体激励布局。研究发现,位于叶片吸力面和压力面附面层分离点前的等离子体激励均可通过诱导产生畸变团,触发分离剪切层的K-H不稳定并进一步形成展向大涡结构,促进主流与分离区低能流体之间的掺混从而抑制流动分离。同时叶栅通道激波系结构发生改变,分离区形态与通道激波位置相互关联耦合,附面层黏性损失和激波损失占比变化不尽相同。  相似文献   

11.
透平叶栅非轴对称端壁的气动最优化设计   总被引:5,自引:0,他引:5  
本文应用非均匀有理B样条曲面技术实现了透平叶栅非轴对称端壁的参数化几何造型,并且以iSIGHTTM商业软件为优化设计平台,结合NUMECA软件进行数值模拟,构建了非轴对称端壁的气动优化设计系统.应用该系统对某级透平静叶轮毂端壁进行了非轴对称端壁造型的气动最优化设计.结果表明,非轴对称端壁造型将改变端壁附近的压力分布,使透平叶栅气动性能得到改善.  相似文献   

12.
离心压气机低稠度串列叶栅扩压器流场数值分析   总被引:3,自引:0,他引:3  
1前言无叶扩压器有宽广的工作范围,但其压力恢复系数低;有叶扩压器可以得到较高的压力恢复系数,但工作范围会变小。低稠度叶栅扩压器取消了喉口,这样就解决了大流量时喉口堵塞问题。1981年文献山第一次提出了低稠度叶栅扩压器的概念,而后文献问以及文献门做了进一步的工作。文献间的实验证明使用串列低稠度叶栅使扩压器压力恢复系数比无叶扩压器在设计点提高15%,在低流量区提高40%,级效率在100~7O%流量范围内提高4O~IO%。为了进一步了解低稠度串列叶栅扩压器内部流场及其工作性能,掌握低稠度串列叶栅扩压器内部流场分析计算…  相似文献   

13.
叶尖小翼对扩压叶栅气动特性影响的数值研究   总被引:5,自引:0,他引:5  
通过在叶片顶端加装小翼来降低叶顶二次流的叶尖小翼技术在叶轮机械领域受到关注。本文对具有不同叶尖小翼方案的压气机叶栅进行了全三维数值模拟,并详细分析了叶尖小翼对叶顶间隙流场的影响.结果表明,合理选择叶尖小翼的安装位置及自身宽度可以在一定程度上降低叶顶泄漏损失,在叶顶吸力面侧加装宽度为5 mm的小翼可以较好的削弱泄漏流动的强度,减少泄漏涡卷吸起更多的吸力面/端壁角区的低能流体及较早地阻止上通道涡的形成和发展。  相似文献   

14.
本文在低速风洞上对叶顶间隙尺寸为0.036 m的常规直叶栅的间隙中分面和上、下游及栅内的气动参数进行了详细的测量,并与黄洪雁博士对相同叶栅测量的0.023 m间隙尺寸下的实验数据进行了比较。通过对实验结果的分析和讨论,认为叶顶间隙的存在将在涡轮叶栅内引起沿叶高指向上端壁的二次流动,从而改善了下半叶展的流动性能,恶化了上半叶展的流动状态。在较大间隙下泄漏流动更加趋近上端壁,增强了壁面剪切效应,从而使得较大间隙的总压损失大于较小间隙。  相似文献   

15.
基于控制理论的气动设计方法作为一种基于梯度的优化方法,通过引入伴随系统计算目标函数的敏感性导数,大大降低设计成本.本文将基于控制理论的气动设计方法应用到透平叶栅的气动反问题中,应用Euler方程研究了二维叶栅的压力反设计问题,并讨论了该方法具体实施中的关键问题,包括采用非均匀B样条进行二维叶栅造型;应用Thompson时间相关边界条件理论进行伴随方程特征分析;研究伴随方程的数值求解方法,构造伴随方程的耗散通量.通过算例证明了该气动设计方法适用性好,速度快,可以大大节约计算成本.  相似文献   

16.
采用控制容积积分法和协调一致压力修正算法数值求解三维稳态时均N-S方程组,对一小展弦比透平动叶栅在旋转状态下的二次流涡系演变和三维气动特性进行了分析。计算结果表明,该叶栅上下端壁通道涡在叶展中部交汇,在该处产生强烈的横向流动并引起叶展中部能量损失急剧增加,使损失沿叶高的分布由常见的双驼峰型变为单驼峰型,同时还使叶展中部出口气流的欠偏转角大幅度增大。  相似文献   

17.
前缘逆主流喷射冷气时涡轮叶栅流场性能研究   总被引:4,自引:0,他引:4  
前缘逆主流喷射冷气对壁面静压有明显影响;冷气与主流掺混及卵型涡的形成导致近叶片表面处能量损失增加;吸力面或压力面根部出现与通道涡旋向相同或相反的涡系;卵型涡能够以一定形式保持到叶栅出口并与尾迹作用,使出口处气动参数剧烈变化.  相似文献   

18.
关于运用探究式方法进行物理实验教学的探索   总被引:17,自引:0,他引:17  
本阐述了探究式教学的目的,分析了大学物理教学对培养学生创新素质的种种不足。并介绍了运用探究式实验教学培养学生创新素质的改革尝试。  相似文献   

19.
唐孝威 《物理学报》1961,17(4):191-197
作者和Ю.Д.Прокошкин测量了高能正电子的极联曲线,找出了级联曲线的近似经验公式,提出了几种测定高能电子(或γ量子)能量的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号