for fixed integers k with k≠0,±1 in the quasi-Banach spaces.  相似文献   

9.
Periods of some nonlinear shift registers     
Ethan M Coven  G.A Hedlund 《Journal of Combinatorial Theory, Series A》1979,27(2):186-197
We determine the set of all possible least periods of shift register sequences for non-linear feedback functions of the form f(x0,…,xm?1) = x0 + Πi=1k (xi + bi) where m ? k + 1 ? 3 and the least period of the k-block b1bk itself.  相似文献   

10.
Romanoff theorem in a sparse set     
Yong-Gao Chen 《中国科学 数学(英文版)》2010,53(9):2195-2202
Let A be any subset of positive integers,and P the set of all positive primes.Two of our results are:(a) the number of positive integers which are less than x and can be represented as 2k + p(resp.p-2k) with k ∈ A and p ∈ P is more than 0.03A(log x/log 2)π(x) for all sufficiently large x;(b) the number of positive integers which are less than x and can be represented as 2q + p with p,q ∈ P is(1 + o(1))π(log x/log 2)π(x).Four related open problems and one conjecture are posed.  相似文献   

11.
Irreducibility criteria of Schur-type and Pólya-type     
K. Gy?ry  L. Hajdu  R. Tijdeman 《Monatshefte für Mathematik》2011,6(9):415-443
Let f(x)=(x-a1)?(x-am){f(x)=(x-a_1)\cdots (x-a_m)}, where a 1, . . . , a m are distinct rational integers. In 1908 Schur raised the question whether f(x) ± 1 is irreducible over the rationals. One year later he asked whether (f(x))2k+1{(f(x))^{2^k}+1} is irreducible for every k ≥ 1. In 1919 Pólya proved that if P(x) ? \mathbbZ[x]{P(x)\in\mathbb{Z}[x]} is of degree m and there are m rational integer values a for which 0 < |P(a)| < 2N N! where Nm/2ù{N=\lceil m/2\rceil}, then P(x) is irreducible. A great number of authors have published results of Schur-type or Pólya-type afterwards. Our paper contains various extensions, generalizations and improvements of results from the literature. To indicate some of them, in Theorem 3.1 a Pólya-type result is established when the ground ring is the ring of integers of an arbitrary imaginary quadratic number field. In Theorem 4.1 we describe the form of the factors of polynomials of the shape h(x) f(x) + c, where h(x) is a polynomial and c is a constant such that |c| is small with respect to the degree of h(x) f(x). We obtain irreducibility results for polynomials of the form g(f(x)) where g(x) is a monic irreducible polynomial of degree ≤ 3 or of CM-type. Besides elementary arguments we apply methods and results from algebraic number theory, interpolation theory and diophantine approximation.  相似文献   

12.
Dimensions of some fractals defined via the semigroup generated by 2 and 3     
Yuval Peres  Joerg Schmeling  Stéphane Seuret  Boris Solomyak 《Israel Journal of Mathematics》2014,199(2):687-709
We compute the Hausdorff and Minkowski dimension of subsets of the symbolic space Σ m ={0, ...,m?1}? that are invariant under multiplication by integers. The results apply to the sets {x∈Σ m :? k, x k x 2k ... x nk =0}, where n ≥ 3. We prove that for such sets, the Hausdorff and Minkowski dimensions typically differ.  相似文献   

13.
An inversion formula for a class of integral transforms,II     
C Nasim 《Journal of Mathematical Analysis and Applications》1979,67(1):163-170
In this note we give a procedure for inverting the integral transform f(x) = ∫0k(xt) φ(t) dt, where the functions f(x) and k(x) are known and φ(x) is to be found. The inversion is accomplished in two steps: by first defining a transforming function, which is an integral, followed by the application of an infinite order differential operator.  相似文献   

14.
Universally bad integers and the 2-adics     
S.J Eigen  V.S Prasad 《Journal of Number Theory》2004,107(2):322-334
In his 1964 paper, de Bruijn (Math. Comp. 18 (1964) 537) called a pair (a,b) of positive odd integers good, if , where is the set of nonnegative integers whose 4-adic expansion has only 0's and 1's, otherwise he called the pair (a,b) bad. Using the 2-adic integers we obtain a characterization of all bad pairs. A positive odd integer u is universally bad if (ua,b) is bad for all pairs of positive odd integers a and b. De Bruijn showed that all positive integers of the form u=2k+1 are universally bad. We apply our characterization of bad pairs to give another proof of this result of de Bruijn, and to show that all integers of the form u=φpk(4) are universally bad, where p is prime and φn(x) is the nth cyclotomic polynomial. We consider a new class of integers we call de Bruijn universally bad integers and obtain a characterization of such positive integers. We apply this characterization to show that the universally bad integers u=φpk(4) are in fact de Bruijn universally bad for all primes p>2. Furthermore, we show that the universally bad integers φ2k(4), and more generally, those of the form 4k+1, are not de Bruijn universally bad.  相似文献   

15.
Recurrent points and non-wandering points of graph maps     
Jiehua Mai  Taixiang Sun 《Journal of Mathematical Analysis and Applications》2011,383(2):553-2220
Let G be a graph and f:GG be a continuous map. Denote by P(f), R(f) and Ω(f) the sets of periodic points, recurrent points and non-wandering points of f, respectively. In this paper we show that: (1) If L=(x,y) is an open arc contained in an edge of G such that {fm(x),fk(y)}⊂(x,y) for some m,kN, then R(f)∩(x,y)≠∅; (2) Any isolated point of P(f) is also an isolated point of Ω(f); (3) If xΩ(f)−Ω(fn) for some nN, then x is an eventually periodic point. These generalize the corresponding results in W. Huang and X. Ye (2001) [9] and J. Xiong (1983, 1986) [17] and [19] on interval maps or tree maps.  相似文献   

16.
Regularized traces of singular differential operators with canonical boundary conditions     
A. I. Kozko  A. S. Pechentsov 《Moscow University Mathematics Bulletin》2011,66(4):147-152
A self-adjoint differential operator \(\mathbb{L}\) of order 2m is considered in L 2[0,∞) with the classic boundary conditions \(y^{(k_1 )} (0) = y^{(k_2 )} (0) = y^{(k_3 )} (0) = \ldots = y^{(k_m )} (0) = 0\), where 0 ≤ k 1 < k 2 < ... < k m ≤ 2m ? 1 and {k s } s=1 m ∪ {2m ? 1 ? k s } s=1 m = {0, 1, 2, ..., 2m ? 1}. The operator \(\mathbb{L}\) is perturbed by the operator of multiplication by a real measurable bounded function q(x) with a compact support: \(\mathbb{P}\) f(x) = q(x)f(x), fL 2[0,). The regularized trace of the operator \(\mathbb{L} + \mathbb{P}\) is calculated.  相似文献   

17.
The program iteration method in a game problem of guidance     
A. G. Chentsov 《Proceedings of the Steklov Institute of Mathematics》2017,296(1):43-59
Let a sequence of d-dimensional vectors n k = (n k 1 , n k 2 ,..., n k d ) with positive integer coordinates satisfy the condition n k j = α j m k +O(1), k ∈ ?, 1 ≤ jd, where α 1 > 0,..., α d > 0 and {m k } k=1 is an increasing sequence of positive integers. Under some conditions on a function φ: [0,+∞) → [0,+∞), it is proved that, if the sequence of Fourier sums \({S_{{m_k}}}\) (g, x) converges almost everywhere for any function gφ(L)([0, 2π)), then, for any d ∈ ? and fφ(L)(ln+ L) d?1([0, 2π) d ), the sequence \({S_{{n_k}}}\) (f, x) of rectangular partial sums of the multiple trigonometric Fourier series of the function f and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.  相似文献   

18.
Best quadrature formulas at equally spaced nodes     
C.A Micchelli 《Journal of Mathematical Analysis and Applications》1974,47(2):232-249
It has been known for some time that the trapezoidal rule Tnf = 12f(0) + f(1) + … + f(n ? 1) + 12f(n) is the best quadrature formula in the sense of Sard for the space W1,p, all functions such that f?Lp. In other words, the norm of the error functional Ef = ∝0nf(x) dx ? ∑k = 0nλkf(k) in W1,p is uniquely minimized by the trapezoidal sum. This paper deals with quadrature formulas of the form ∑k = 0nl?Jcklf(l)(k) where J is some subset of {0, 1,…, m ? 1}. For certain index sets J we identify the best quadrature formula for the space Wm,p, all functions such that f(m)?Lp. As a result, we show that the Euler-Maclaurin quadrature formula
Tnf + o<2v≤mB2v(2v)! (f (2v?1)(0) ? f (2v?1) (n))
is the best quadrature formula of the above form with J = {0, 1, 3,…, ?m ? 1} for the space Wm,p, providing m is an odd integer.  相似文献   

19.
Equicontinuity of maps on a dendrite with finite branch points          下载免费PDF全文
Tai Xiang Sun  Guang Wang Su  Hong Jian Xi  Xin Kong 《数学学报(英文版)》2017,33(8):1125-1130
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

20.
Multiple recurrence and nilsequences     
Vitaly Bergelson  Bernard Host  Bryna Kra  Imre Ruzsa 《Inventiones Mathematicae》2005,160(2):261-303
Aiming at a simultaneous extension of Khintchine(X,X,m,T)(X,\mathcal{X},\mu,T) and a set A ? XA\in\mathcal{X} of positive measure, the set of integers n such that A T^2nA T^knA)(A)^k+1-\mu(A{\cap} T^{n}A{\cap} T^{2n}A{\cap} \ldots{\cap} T^{kn}A)>\mu(A)^{k+1}-\epsilon is syndetic. The size of this set, surprisingly enough, depends on the length (k+1) of the arithmetic progression under consideration. In an ergodic system, for k=2 and k=3, this set is syndetic, while for kòf(x)f(Tnx)f(T2nx)? f(Tknx)  dm(x)\int{f(x)f(T^{n}x)f(T^{2n}x){\ldots} f(T^{kn}x) \,d\mu(x)} , where k and n are positive integers and f is a bounded measurable function. We also derive combinatorial consequences of these results, for example showing that for a set of integers E with upper Banach density d*(E)>0 and for all {n ? \mathbbZ\colon d*(E?(E+n)?(E+2n)?(E+3n)) > d*(E)4-e}\big\{n\in\mathbb{Z}{\colon} d^*\big(E\cap(E+n)\cap(E+2n)\cap(E+3n)\big) > d^*(E)^4-\epsilon\big\}  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let m be a positive integer and fm(x) be a polynomial of the form fm(x)=x2+xm. We call a polynomial fm(x) a Rabinowitsch polynomial if for and consecutive integers x=x0,x0+1,…,x0+s−1, |fm(x)| is either 1 or prime. In this paper, we show that there are exactly 14 Rabinowitsch polynomials fm(x).  相似文献   

2.
We are concerned with the discrete focal boundary value problem Δ3x(tk) = f(x(t)), x(a) = Δx(t2) = Δ2x(b + 1) = 0. Under various assumptions on f and the integers a, t2, and b we prove the existence of three positive solutions of this boundary value problem. To prove our results we use fixed point theorems concerning cones in a Banach space.  相似文献   

3.
Let m be a positive integer and fm(x) be a polynomial of the form fm(x)=x2+xm. We call a polynomial fm(x) a Rabinowitsch polynomial if for and consecutive integers is either 1 or prime. In Byeon (J. Number Theory 94 (2002) 177), we showed that there are only finitely many Rabinowitsch polynomials fm(x) such that 1+4m is square free. In this note, we shall remove the condition that 1+4m is square free.  相似文献   

4.
Let (n k ) k≧1 be a lacunary sequence of positive integers, i.e. a sequence satisfying n k+1/n k > q > 1, k ≧ 1, and let f be a “nice” 1-periodic function with ∝ 0 1 f(x) dx = 0. Then the probabilistic behavior of the system (f(n k x)) k≧1 is very similar to the behavior of sequences of i.i.d. random variables. For example, Erd?s and Gál proved in 1955 the following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary $ (n_k )_{k \geqq 1} $ : (1) $$ \mathop {\lim \sup }\limits_{N \to \infty } (2N\log \log N)^{1/2} \sum\limits_{k = 1}^N {f(n_k x)} = \left\| f \right\|_2 $$ for almost all x ∈ (0, 1), where ‖f2 = (∝ 0 1 f(x)2 dx)1/2 is the standard deviation of the random variables f(n k x). If (n k ) k≧1 has certain number-theoretic properties (e.g. n k+1/n k → ∞), a similar LIL holds for a large class of functions f, and the constant on the right-hand side is always ‖f2. For general lacunary (n k ) k≧1 this is not necessarily true: Erd?s and Fortet constructed an example of a trigonometric polynomial f and a lacunary sequence (n k ) k≧1, such that the lim sup in the LIL (1) is not equal to ‖f2 and not even a constant a.e. In this paper we show that the class of possible functions on the right-hand side of (1) can be very large: we give an example of a trigonometric polynomial f such that for any function g(x) with sufficiently small Fourier coefficients there exists a lacunary sequence (n k ) k≧1 such that (1) holds with √‖f 2 2 + g(x) instead of ‖f2 on the right-hand side.  相似文献   

5.
Let f(x, y) be an indefinite binary quadratic form, d(f) its discriminant, m(f) the infimum of |f(x, y)| over all integers x, y not both zero, and put μ(f) = m(f)d(f)?12. In this paper we prove the existence of countably many disjoint open intervals Ij contained in 0 ≤ x ≤ 13 such that there is no f with μ(f) in Ij (j = 1, 2,…) and such that for any interval I containing two intervals Ij, Ik there is an f with μ(f) in I.  相似文献   

6.
On the basis of a random sample of size n on an m-dimensional random vector X, this note proposes a class of estimators fn(p) of f(p), where f is a density of X w.r.t. a σ-finite measure dominated by the Lebesgue measure on Rm, p = (p1,…,pm), pj ≥ 0, fixed integers, and for x = (x1,…,xm) in Rm, f(p)(x) = ?p1+…+pm f(x)/(?p1x1 … ?pmxm). Asymptotic unbiasedness as well as both almost sure and mean square consistencies of fn(p) are examined. Further, a necessary and sufficient condition for uniform asymptotic unbisedness or for uniform mean square consistency of fn(p) is given. Finally, applications of estimators of this note to certain statistical problems are pointed out.  相似文献   

7.
8.
In this paper, we achieve the general solution and the generalized Hyers–Ulam–Rassias stability of the following functional equation
f(x+ky)+f(xky)=k2f(x+y)+k2f(xy)+2(1−k2)f(x)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号