首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two βCD dimers (linked by succinic acid, 2, or ethylenediaminetetraacetic acid, EDTA, 3, bridges) and a negatively charged monomer derivative of βCD, 1, have been synthesized and their ability to solubilize cholesterol in aqueous solution was studied. The three compounds exhibit a great capacity in solubilizing cholesterol as, for instance, concentrations up to 6 mM of cholesterol were measured in the presence of 25 mM of 3. The phase-solubility diagrams of the two dimers exhibit A L type profiles while the monomer 1 follows an A P isotherm. The cholesterol/dimer complexes have 1:1 stoicheiometries while monomer 1 forms two complexes with molar ratios of 1:1 and 1:2 (cholesterol/1). The equilibrium constants are K 1:1 = (5.9 ± 0.3) × 104 M?1 and K 1:1 = (8.8 ± 0.2) × 104 M?1 for 2 and 3, respectively, and K 1:1 = 73 ± 19 M?1 and K 1:2 = 204 ± 65 M?1 for 1. The comparison of K 1:1(3) with the product K 1:1 × K 1:2 (1) reveals that a chelate effect in binding the cholesterol by 3 exists. The structure of the cholesterol/3 complex was studied by ROESY experiments and by molecular dynamics simulations.  相似文献   

2.
Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %–92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.
Figure
?  相似文献   

3.
We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of ?0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s?1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM?1 cm?2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. Figure
Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx  相似文献   

4.
Complexation of alkali metal cations with 5,11,17,23-tetra-tert-butyl-26,28,25,27-tetrakis(O-methyl-D-α-phenylglycylcarbonylmethoxy)calix[4]arene (L) was studied by means of spectrophotometric, conductometric and potentiometric titrations at 25 °C. The solvent effect on the binding ability of L was examined by using two solvents with different affinities for hydrogen bonding, viz. methanol and acetonitrile. Despite the presence of intramolecular NH···O=C hydrogen bonds in L, which need to be disrupted to allow metal ion binding, this calix[4]arene amino acid derivative was shown to be an efficient binder for smaller Li+ and Na+ cations in acetonitrile (lg K LiL  > 5, lg K NaL  = 7.66), moderately efficient for K+ (lg K KL  = 4.62), whereas larger Rb+ and Cs+ did not fit in its hydrophilic cavity. The complex stabilities in methanol were significantly lower (lg K NaL  =  4.45, lg K KL  = 2.48). That could be explained by different solvation of the cations and by competition between the cations and methanol molecules (via hydrogen bonds) for amide carbonyl oxygens. The influence of cation solvation on complex stability was most pronounced in the case of Li+ for which, contrary to the quite stable LiL + complex in acetonitrile, no complexation was observed in methanol under the conditions used.  相似文献   

5.
Methylisothiocyanate (MITC) is the main degradation product of metam sodium, a soil disinfectant widely used in agriculture, and is responsible for its disinfectant properties. Because MITC is highly toxic and volatile, metam sodium has to be applied in a manner that tries to reduce atmospheric emissions but still maintains adequate concentration of MITC in soil to ensure its disinfectant effect. Thus, monitoring of MITC concentrations in soil is required, and to this end sensitive, fast, and reliable analytical methods must be developed. In this work, a headspace solid-phase microextraction (HS-SPME) method was developed for MITC determination in water and soil samples using gas chromatography-tandem mass spectrometry (GC–MS–MS) with a triple-quadrupole analyzer. Two MS–MS transitions were acquired to ensure the reliable quantification and confirmation of the analyte. The method had linear behavior in the range tested (0.026–2.6 ng mL?1 in water, 1–100 ng g?1 in soil) with r 2 over 0.999. Detection limits were 0.017 ng mL?1 and 0.1 ng g?1 in water and soil, respectively. Recoveries for five replicates were in the range 76–92 %, and RSD was below 7 % at the two spiking levels tested for each matrix (0.1 and 1 ng mL?1 for water, 4 and 40 ng g?1 for soil). The potential of using multiple HS-SPME for analyzing soil samples was also investigated, and its feasibility for quantification of MITC evaluated. The developed HS-SPME method was applied to soil samples from experimental plots treated with metam sodium following good agriculture practices. Figure
?  相似文献   

6.
7.
A stability-indicating ultra-high-performance liquid chromatography (UHPLC) method with a diode array detector was developed and validated for the determination of cis/trans isomers of perindopril l-arginine in bulk substance and pharmaceutical dosage form. The separation was achieved on a Poroshell 120 Hilic (4.6 × 150 mm, 2.7 µm) column using a mobile phase composed of acetonitrile–0.1 % formic acid (20:80 v/v) at a flow rate of 1 mL min?1. The injection volume was 5.0 µL and the wavelength of detection was controlled at 230 nm. The selectivity of the UHPLC-DAD method was confirmed by determining perindopril l-arginine in the presence of degradation products formed during acid–base hydrolysis and oxidation as well as degradation in the solid state, at an increased relative air humidity and in dry air. The method’s linearity was investigated in the ranges 0.40–1.40 µg mL?1 for isomer I and 0.40–2.40 µg mL?1 for isomer II of perindopril l-arginine. The UHPLC-DAD method met the precision and accuracy criteria for the determination of the isomers of perindopril l-arginine. The limits of detection and quantitation were 0.1503 and 0.4555 µg mL?1 for isomer I and 0.0356 and 0.1078 µg mL?1 for isomer II, respectively.  相似文献   

8.
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L?1 to 300 μg L?1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L?1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L?1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples. Figure
We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples  相似文献   

9.
Two DOTA-based proligands bearing a pendant diphenylphosphinamide 4a and 4b were synthesised. Their Eu(III) complexes exhibit sensitised emission when excited at 270 nm via the diphenylphosphinamide chromophore. Hydration states of q = 1.5 were determined from excited state lifetime measurements (Eu.4a $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 1 4 \,{\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 6 4 \,{\text{ms}}^{ - 1} $ ; Eu.4b $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 6 7\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1. 1 8 \,{\text{ms}}^{ - 1} $ ). In the presence of human serum albumin (HSA) (0.1 mM Eu.4a/b, 0.67 mM HSA, pH 7.4) q = 0.4 for Eu.4a ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 3 4\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 7 5\, {\text{ms}}^{ - 1} $ ) and q = 0.6 for Eu.4b ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 8 3\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1.0 5 \,{\text{ms}}^{ - 1} $ ). Relaxivites (pH 7.4, 298 K, 20 MHz) of the Gd(III) complexes in the absence and presence of HSA (0.1 mM Gd.4a/b, 0.67 mM HSA) were: Gd.4a (r 1 = 7.6 mM?1s?1 and r 1 = 11.7 mM?1s?1) and Gd.4b. (r 1 = 7.3 mM?1s?1 and r 1 = 16.0 mM?1s?1). These relatively modest increases in r 1 are consistent with the change in inner-sphere hydration on binding to HSA shown by luminescence measurements on Eu.4a/b. Binding constants for HSA determined by the quenching of luminescence (Eu) and enhancement of relaxivity (Gd) were Eu.4a (27,000 M?1 ± 12%), Eu.4b (32,000 M?1 ± 14%), Gd.4a (21,000 M?1 ± 15%) and Gd.4b (26,000 M?1 ± 15%).  相似文献   

10.
A simple, sensitive, and reliable liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of pyraoxystrobin in rat plasma and applied to a toxicokinetics study. The separation was performed by gradient elution on a Luna 5 μ C18 (2) 100 Å column (50?×?4.6 mm I.D., 5 μm) with mobile phase: water (0.1 % formic acid, v/v)/acetonitrile (0.1 % formic acid, v/v), followed by quantification with a mass detector in multiple reaction monitoring (MRM) mode using ESI as an interface. The calibration curve was linear over a concentration range of 1.00–200 ng/mL. The recovery for pyraoxystrobin ranged from 101.4 to 108.2 %. The intraday bias and precision ranged from ?9.3 to 8.1 % and from 0.7 to 8.4 %, respectively, and the interday bias and precision ranged from ?0.3 to 4.0 % and from 4.4 to 7.2 %, respectively. The toxicokinetics of pyraoxystrobin after single 100 and 1,000 mg/kg oral doses were studied in rats. Figure
The chromatogram of pyraoxystrobin highest calibration standard (ULOQ) extract.  相似文献   

11.
In an effort to understand the reactions of antibiotics hydrolysis with metallo-β-lactamases (MβLs), the thermokinetic parameters of cefazolin hydrolysis with B1 subclass MβL CcrA from Bacteroides fragilis were determined by microcalorimetric method. The values of activation free energy $ \Updelta G_{ \ne }^{\theta } $ are 88.032 ± 0.038, 89.075 ± 0.025, 90.095 ± 0.034, and 91.261 ± 0.044 kJ mol?1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, the activation enthalpy $ \Updelta H_{ \ne }^{\theta } $ is 25.278 ± 0.005 kJ mol?1, the activation entropy $ \Updelta S_{ \ne }^{\theta } $ is ?213.99 ± 0.14 J mol?1 K?1, the apparent activation energy E is 27.776 kJ mol?1, and the reaction order is 1.4. The results indicated that the cefazolin hydrolysis with CcrA is an exothermic and spontaneous reaction. An association between the thermokinetic and kinetic parameters was revealed, which is that the catalytic constant K cat increase with increase in $ \Updelta H_{ \ne }^{\theta } $ .  相似文献   

12.
Ultraperformance convergence chromatography/tandem triple quadrupole mass spectrometry (UPC2-MS/MS) is a novel tool in separation science that combines the advantages of supercritical fluid chromatography with ultraperformance liquid chromatography/MS/MS technology. The use of nontoxic CO2 fluid and a postcolumn additive to complement MS/MS allows better control of analyte retention for chiral separation and high-sensitivity determination with different chiral stationary phases. This paper reports the stereoselective separation and determination of the chiral neonicotinoid sulfoxaflor in vegetables and soil by UPC2-MS/MS. Baseline resolution (Rs?≥?1.56) of and high selectivity (LOQ?≤?1.83 μg/kg) for the four stereoisomers were achieved by postcolumn addition of 1 % formic acid–methanol to a Chiralpak IA-3 using CO2/isopropanol/acetonitrile as the mobile phase at 40 °C, 2,500 psi, and for 6.5 min in electrospray ionization positive mode. Rearranged Van’t Hoff equations afforded the thermodynamic parameters ΔH ο and ΔS ο, which were analyzed to promote understanding of the enthalpy-driven separation of sulfoxaflor stereoisomers. The interday mean recovery, intraday repeatability, and interday reproducibility varied from 72.9 to 103.7 %, from 1.8 to 9.2 %, and from 3.1 to 9.4 %, respectively. The proposed method was used to study the pharmacokinetic dissipation of sulfoxaflor stereoisomers in soil under greenhouse conditions. The estimated half-life ranged from 5.59 to 6.03 d, and statistically nonsignificant enantioselective degradation was observed. This study not only demonstrates that the UPC2-MS/MS system is an efficient and sensitive method for sulfoxaflor stereoseparation, but also provides the first experimental evidence of the pharmacokinetic dissipation of sulfoxaflor stereoisomers in the environment. Graphical Abstract
Chemical structure and UPC2-MS/MS separation chromatogram of sulfoxaflor. (* stereogenic center)  相似文献   

13.
Xanthine oxidase (XOD) catalyzes the metabolism of hypoxanthine and xanthine to uric acid, the overproduction of which could cause hyperuricemia, a risk factor for gout. Inhibition of XOD is a major treatment for gout, and biflavonoids have been found to act as XOD-inhibitory compounds. In this study, ultrafiltration liquid chromatography with photodiode-array detection coupled to electrospray-ionization tandem mass spectrometry (UF-LC-PDA–ESI-MS) was used to screen and identify XOD inhibitors from S. tamariscina. High-performance counter-current chromatography (HPCCC) was used to separate and isolate the active constituents of these XOD inhibitors. Furthermore, ultrahigh-performance liquid chromatography (UPLC) and triple-quadrupole mass spectrometry (TQ-MS) was used to determine the XOD-inhibitory activity of the obtained XOD inhibitors, and enzyme kinetics was performed with Lineweaver–Burk (LB) plots using xanthine as the substrate. As a result, two compounds in S. tamariscina were screened as XOD inhibitors: 65.31 mg amentoflavone and 0.76 mg robustaflavone were isolated from approximately 2.5 g?S. tamariscina by use of HPCCC. The purities of the two compounds obtained were over 98 % and 95 %, respectively, as determined by high-performance liquid chromatography (HPLC). Lineweaver–Burk plot analysis indicated that amentoflavone and robustaflavone were non-competitive inhibitors of XOD, and the IC 50 values of amentoflavone and robustaflavone for XOD inhibition were 16.26 μg mL?1 (30.22 μmol L?1) and 11.98 μg mL?1 (22.27 μmol L?1), respectively. The IC 50 value of allopurinol, used as the standard, was 7.49 μg mL?1 (46.23 μmol L?1). The results reveal that the method for systematic screening, identification, and isolation of bioactive components in S. tamariscina and for detecting their inhibitory activity using ultrafiltration LC–ESI-MS, HPCCC, and UPLC–TQ-MS is feasible and efficient, and could be expected to extend to screening and separation of other enzyme inhibitors. Graphical Abstract
?  相似文献   

14.
Pyrrolizidine alkaloids (PAs) are a large class of natural compounds amongst which the esterified 1,2-unsaturated necine base is toxic for humans and livestock. In the present study, a method was developed and validated for the screening and quantification of nine PAs and one PA N-oxide in teas (Camellia sinensis (L.) O. Kuntze) and herbal teas (camomile, fennel, linden, mint, rooibos, verbena). Samples were analysed by HPLC on a RP-column, packed with sub-2 μm core-shell particles, and quantified using tandem mass spectrometry operating in the positive electrospray ionisation mode. These PAs and some of their isomers were detected in a majority of the analysed beverages (50/70 samples). In 24 samples, PA concentrations were above the limit of quantification and the sum of the nine targeted PAs was between 0.021 and 0.954 μg per cup of tea. Thus, in some cases, total concentrations exceed the maximum daily intake recommended by the German Federal Institute for Risk Assessment and the UK’s Committee On Toxicity (i.e. 0.007 μg kg?1 bw). Graphical Abstract
?  相似文献   

15.
Carbohydrate recognition of some bioactive symmetrical tripodal receptor type tris(2-aminoethyl)amine (TAEA) derivatives was investigated. In calorimetric experiments, the highest binding constant (Ka) of compound C (C35H49N5O4S) with methyl α-d-mannopyranoside was Ka = 858 M?1 with 1:1 stoichiometry. Formation of hydrogen bonds in binding between symmetrical tripodal receptor type compound C and sugars was suggested by the large negative values of ?H° (=?34 to ?511 kJ mol?1). In a comparison of each set of α- and β-anomers of some monosaccharides (methyl α/β-d-galactopyranoside, methyl α/β-d-glucopyranoside, and methyl α/β-l-fucopyranoside), compound C showed that the binding constant of β-anomer was larger than that of the corresponding α-anomer, indicating higher β-anomer selectivity. The calculated energy-minimized structure of the complex of compound C with guest methyl α-d-mannopyranoside is also presented. The experimental results obtained from this work indicated that symmetrical tripodal receptor type TAEA derivative C has a lectin-like carbohydrate recognition property.  相似文献   

16.
Malic enzymes are a class of oxidative decarboxylases that catalyze the oxidative decarboxylation of malate to pyruvate and carbon dioxide, with concomitant reduction of NAD(P)+ to NAD(P)H. The NADP+-dependent malic enzyme in oleaginous fungi plays a key role in fatty acid biosynthesis. In this study, the malic enzyme-encoding complementary DNA (cDNA) (malE1) from the oleaginous fungus Mortierella alpina was cloned and expressed in Escherichia coli BL21 (DE3). The recombinant protein (MaME) was purified using Ni-NTA affinity chromatography. The purified enzyme used NADP+ as the cofactor. The K m values for l-malate and NADP+ were 2.19?±?0.01 and 0.38?±?0.02 mM, respectively, while the V max values were 147?±?2 and 302?±?14 U/mg, respectively, at the optimal condition of pH 7.5 and 33 °C. MaME is active in the presence of Mn2+, Mg2+, Co2+, Ni2+, and low concentrations of Zn2+ rather than Ca2+, Cu2+, or high concentrations of Zn2+. Oxaloacetic acid and glyoxylate inhibited the MaME activity by competing with malate, and their K i values were 0.08 and 0.6 mM, respectively.  相似文献   

17.
By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Sr2+(aq) + 2A?(aq) + 1(nb) ? 1·Sr2+(nb) + 2A?(nb) occurring in the two-phase water–nitrobenzene system (A? = picrate, 1 = antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log K ex (1·Sr2+, 2A?) = ?0.3 ± 0.1. Further, the stability constant of the 1·Sr2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Sr2+) = 8.8 ± 0.1. Finally, applying quantum mechanical density functional level of theory calculations, the most probable structure of the cationic complex species 1·Sr2+ was derived. In the resulting complex, the “central” cation Sr2+ is bound by six bond interactions to the corresponding six oxygen atoms of the parent ligand 1. The interaction energy of the considered 1·Sr2+ complex was found to be ?1,114.9 kJ/mol, confirming the formation of this cationic species as well.  相似文献   

18.
We report herein the development of a highly sensitive colorimetric method for detection of d-Penicillamine using citrate-capped gold nanoparticles (AuNPs). This assay relies upon the distance-dependent of gold nanoparticles surface plasmon resonance band of gold nanoparticles. By replacing the thiol-containing chelator drug, d-Penicillamine, with citrate on the gold nanoparticles surface, a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position due to aggregation of gold nanoparticles which depends on ionic strength, gold nanoparticles and d-Penicillamine concentration. During this process, the plasmon band at 521 nm decreases gradually along with the formation of a new red-shifted band at 630 nm. The calibration curve which is derived from the ratio intensities of absorbance at longer wavelength (630 nm) to original wavelength (521 nm) displays a linear relation in the range of 5.0 × 10?6–3.0 × 10?4 M d-Penicillamine. Lower limit of detection for d-Penicillamine, at the signal-to-noise ratio of 3 (3σ), was 3.8 × 10?6 M. The developed methodology was successfully applied for the determination of d-Penicillamine in human urine and plasma.  相似文献   

19.
New segmented poly(thiourethane-urethane)s (PTU-Us) (with hard-segment content of 30–60 mass%) were synthesized by a one-step melt polymerization from poly(oxytetramethylene) diol of \( \overline{M}_{n} \)  = 1,000 g mol?1 or \( \overline{M}_{n} \)  = 2,000 g mol?1 or poly(hexamethylene carbonate) diol of \( \overline{M}_{n} \)  = 860 g mol?1 as soft segments, 1,1′-methanediylbis(4-isocyanatocyclohexane) (Desmodur W ®) and (methylenedi-1,4-phenylene)dimethanethiol as a chain extender. The PTU-Us were examined by FTIR, GPC, XRD, DSC, TG, Shore hardness, and tensile testing. Moreover, refractive index, transparency, adhesive properties, and resistance to bacteria and fungi were determined for selected polymers. The obtained high-molar-mass amorphous polymers showed elastomeric or plastic properties. Their T gs were in the range from ?70 to 58 °C. The PTU-Us with the polycarbonate soft segments demonstrated a better segmental miscibility (higher T gs), transparency as well as generally higher tensile strength and hardness than those with the polyether soft segments. All the synthesized PTU-Us showed a relatively good thermal stability. The temperature of 1 % mass loss of all PTU-Us was in the range of 236–255 °C. The introduction of thiourethane linkages to polyurethane chain caused increase of the adhesive strength on copper–polymer junction and refractive index values. From the microbial studies, it was found that the obtained polymers had delayed the growth of Gram-positive bacteria.  相似文献   

20.
Nanometer-sized titanium dioxide (nano-TiO2) is shown to be a viable material for the preconcentration of Alizarin Violet (AV, a common dye and biological stain). In the preconcentration step, a 5-ring cyclic ester is formed between the ortho-dihydroxy groups of AV and two hydroxy groups of the titanic acid on the surface of the nano-TiO2. Under optimized conditions, the adsorption capacity of nano-TiO2 is?~?20 μg?·?mg?1, the adsorption efficiency is 98 %. The adsorbed AV can be eluted with 5 mL of 5 mol?·?L?1 5-sulfosalicylic acid with an elution efficiency of more than 91.8 %. The preconcentration factor is 50 in case of 250 mL samples. Spectrophotometric determination of AV in the eluate gives a linear calibration plot in the range between 18.8 μg?·?L?1 and 10 mg?·?L?1 and a detection limit (3 s; for n?=?11) of 18.8 μg?·?L?1. The method is simple and fast. It was successfully applied to the analysis of AV in spiked natural waters, and recoveries were found to range between 94.2 and 97.3 %.
Nanometer-sized titanium dioxide is a viable material for the preconcentration of Alizarin Violet (AV), before its spectrophotometrical determination. The method is simple and fast. It was successfully applied to the analysis of AV in spiked natural waters, and recoveries were found to range between 94.2 and 97.3 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号