首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic red emitting diode was fabricated by using 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[ij]quinolizin-8-yl)vinyl]-4H-pyran (DCM)-doped tri-(8-quinolitolato) aluminum (Alq3) as emitter with the structure of G/ITO/NPB(25 nm)/DCM:Alq3(55 nm)/Alq3(20 nm)/LiF (1.2 nm)/Al(84 nm), (glass/indium–tin-oxide/4,4-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl, G/ITO/NPB), the wavelength of the maximal emission of which is 615 nm. By introducing cavity to Organic light emitting diode (OLED), we got pure red emitting diode with wavelength of the maximal emission of 621 nm and full-width at half-maximum (FWHM) of 27 nm. As far as we know, it is the best result in the dye-doped organic red emitting diode. We also made a device of G/ITO/NPB(25 nm)/DCM:Alq3(29 nm)/DCM:PBD(26 nm)/Alq3(20 nm)/LiF(1.2 nm)/Al(84 nm), in order to compare the performance of Alq3 with that of 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD) as host material. It was found that the performance of device A is better than that of C both in brightness and color purity,as well as in EL efficiency.  相似文献   

2.
In this paper, we present a study of light extraction of GaN-based LEDs through active/passive photon recycling, including sapphire-based and Thin-GaN based on Monte Carlo ray tracing. The mechanisms in enhancing light extraction incorporated with implanting micro pyramid (lens) array and lens encapsulation of both cavity photon recycling and quantum photon recycling are discussed. For an absorption coefficient of 200 cm− 1 in the active layer, both approaches perform more than 90% of light extraction efficiency through cavity photon recycling. For a heavy absorbed active layer, the quantum photon recycling could play an important role in light extraction.  相似文献   

3.
Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared   总被引:1,自引:0,他引:1  
In this paper we outline the use of resonant-cavity enhancement for increasing the exterior coupling efficiency of photodetectors and light-emitting diodes (LEDs) in the mid-infrared (MIR) spectral region. This method is potentially very important in the MIR because encapsulation is not presently feasible due to the lack of suitable materials. Among other potential applications, resonant-cavity-enhanced (RCE) photodetectors and LEDs could be particularly suitable for greenhouse gas detection because of their ‘pre-tunable’ spectrally narrowed resonantly enhanced peaks. We also present the optical characterization of an InAs RCE photodetector aimed at the detection of methane gas (λ≈3.3 μm), and an InAs/InAs0.91Sb0.09 resonant-cavity LED (RCLED) aimed at carbon dioxide gas (λ≈4.2 μm). The high peak responsivity of the RCE photodetector was 34.7 A/W at λ=3.14 μm, and the RCLED peaked at λ=3.96 μm. These are among the longest operating wavelengths for III–V RCE photodetectors and RCLEDs reported in the literature.  相似文献   

4.
We have studied the coherent dynamics of a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond time resolution in a backscattering geometry. Evidence is brought of the resolution of a homogeneous polariton line in an inhomogeneously broadened exciton system. Surprisingly, photon-like polaritons exhibit an inhomogeneous dephasing. Moreover, we observe an unexpected stationary coherence up to 8 ps for the lower polariton branch close to resonance. All these experimental results are well reproduced within the framework of a linear dispersion theory assuming a coherent superposition of the reflectivity and resonant Rayleigh scattering signals with a well-defined relative phase.  相似文献   

5.
The authors report the fabrication of a one-dimensional microcavity structure embedded with colloidal CdSe/ZnS core/shell quantum dots using solution processing. The microcavity structures were fabricated by spin coating alternating layers of polymers of different refractive indices (poly-vinylcarbazole—PVK, and poly-acrylic acid—PAA) to form the distributed Bragg reflectors (DBRs). Greater than 90% reflectivity was obtained using ten periods of the structure. The one-dimensional microcavity was formed by sandwiching a λ/n thick defect layer between two such DBRs. The emission of the quantum dots from the microcavity structure demonstrated directionality following the cavity mode dispersion and spectral narrowing. Room temperature time-resolved photoluminescence measurements carried out on this structure showed significant reduction in the photoluminescence decay time which is attributed primarily to nonradiative mechanism originating in the presence of the PVK host matrix. The photoluminescence decay time of the quantum dots was found to be 1000 ps while for the quantum dots embedded in the polymer host and the microcavity were 400 and 150 ps, respectively.  相似文献   

6.
Polariton linewidths have been measured in a series of microcavities with different excitonic and cavity inhomogeneous broadening in the weak-disorder regime. We show experimentally that the behaviour of the polariton linewidths as a function of the detuning depends on the asymmetric line shape of an inhomogeneously broadened exciton line and particularly the disorder effect can be modulated and cancelled around resonance. When the disorder contribution is minimal, the behaviour of the cavity polariton linewidths tends to one of the homogeneous broadening system.  相似文献   

7.
8.
We have investigated efficiency droop in InGaN-based blue LEDs by considering radiative, nonradiative, and carrier spillover processes in the context of internal quantum efficiency (IQE) vs. injection current. If relied on fitting only, both the Auger recombination and an empirical formula for carrier spillover are consistent with experiments. However, the dependence of IQE on quantum well parameters and lack of droop in optical pumping experiments support the notion that carrier spillover is the main mechanism in play.  相似文献   

9.
10.
We propose an optimal design for enhancing the external quantum efficiency of InGaN/GaN LEDs operating in the green spectral region, by mediating surface plasmons (SP), showing that there is plenty of potential for additional improvement in this area. Coupling the spontaneous emission from quantum wells into SP modes on metallic grating structures could enhance the internal quantum efficiency of conventional LEDs by more than twofold, and the relatively long propagating length of SPs in the green region could allow a narrow radiating angle and thus yield a threefold improvement in the extraction efficiency of radiation. Thus, our design enhances external quantum efficiency by about sixfold overall, offering a practically attainable method to realize highly efficient green SP-LEDs.  相似文献   

11.
We study the interaction between delocalized excitons in a semiconductor quantum well and a longitudinal mode of the radiation field in a semiconductor microcavity with Bragg mirrors. The drastic enhancement of the spontaneous emission rate, that occurs under strong coupling conditions, is found to be surprisingly robust with respect to incoherent processes leading to dephasing of the exciton mode. Received date: 3 June 1998 / Received in final form: 19 November 1998  相似文献   

12.
Interfacial adhesion between an indium tin oxide (ITO)/Ni/Ag/Ni/Au p-electrode, and Au and Ni/Au seeds in vertical GaN-based light emitting diodes (LEDs) was enhanced by O2 plasma cleaning treatment of the Au surface in the p-electrode. However, AES and REELS analyses of the Au surface in the p-electrode detected surface damage to the p-electrode and photoresist (PR) passivation structure from O2 plasma cleaning. W/Ni and Al/Ni adhesion layers were introduced in the Au seed to increase interfacial adhesion between Au seed and untreated PR passivation. Forward leakage current as low as 0.91 nA at 2 V was observed for the vertical LED with the Al/Ni/Au seed, for which adhesion strength to O2 plasma-cleaned Au and untreated PR was 141.2 MPa and 62.8 MPa, respectively.  相似文献   

13.
利用MEMS空气腔在静电力作用下的变形,设计了一种波长可调谐的微腔电致有机发光二极管.通过外加电压,可调制发光中心波长.模拟计算了不同电压下的光谱特性,结果表明可以获得半宽度为2.14 nm,可调谐范围为150 nm的发光光谱.这在光互联的可调谐光源和彩色显示中有很好的应用前景.  相似文献   

14.
We derive a relationship for evaluating the infrared coefficient of absorption in the self-absorption region of a quantum-well laser diode from previous calculation of the electronic density of states. In particular, the far-infrared range is considered.  相似文献   

15.
魏渭 《中国物理》2006,15(11):2600-2605
The quantum features of the temporal photon statistics of an exciton--cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear interactions, i.e. the exciton--exciton coupling and the phase-space filling, are much weaker than the exciton--photon interaction, the evolution of the Fano factor shows that the distribution of the photon numbers exhibits the feature of collapses--revivals (CRs), and the relevant revival time may be adjusted by several factors such as the total particle number, the detuning, and the nonlinear coupling strengths, etc. Especially, the ideal maximum antibunching with the minimum value 0 of the Fano factor occurs periodically for such a situation, with the dissipation of exciton--polariton being ignored.  相似文献   

16.
We report the realization of a monolithic vertical-cavity, surface emitting micro-optical parametric conversion nanostructure, triply resonant with the parametric frequencies, allowing parametric oscillation with ultra-low pump power threshold. The photonic phase-space naturally provides triple resonance for the parametric frequencies, together with built-in cavity phase matching for the pump wave at normal incidence. Parametric oscillation is observed in both the strong and weak exciton–photon coupling regime, allowing high operating temperature. Signal and idler beams can be collected at 0 or at finite angles. The OPO threshold is low enough to envisage the realization of an all-semiconductor electrically-pumped micro-parametric oscillator.  相似文献   

17.
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.  相似文献   

18.
Photonic crystals (PhCs) have attracted much attention during the last decade as a solution to overcome the low extraction efficiency of as‐grown light‐emitting diodes (LEDs). In this review we describe the underlying physics and summarize recent results obtained with PhC LEDs. Here, the main focus is on diffracting PhC. In order to quantify the benefit from the incorporation of PhCs for diffracting light a comparison by simulations between a PhC LED and a standard state‐of‐the‐art LED is carried out. Finally, the impact of the PhC on the LEDs emission characteristics will be discussed with respect to étendue‐limited applications.  相似文献   

19.
通过固相法合成LED用Zn1-xMo1-ySiyO4∶Eu3+x红色荧光粉(0.05≤x≤0.30, 0≤y≤0.09), 讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4∶Eu3+x荧光粉发光性质的影响。 当烧结温度为800 ℃时, 可以生成ZnMoO4纯相目标产物。 由于荧光粉的结晶度和粒径随烧结温度的升高而增大, 所以随着烧结温度的升高, 样品的发光强度有所提高; 当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强, 说明在此体系中, 当Eu3+取代Zn2+时, Na2CO3充当助熔剂的同时, Na+起到了电荷补偿作用。 荧光光谱实验显示Zn1-xMo1-ySiyO4∶Eu3+x能够被393和464 nm的紫外光激发, 在616 nm处发出强烈的红色荧光。 当Eu3+掺杂量约为20% mol时, Zn1-xMo0.97Si0.03O4∶Eu3+x荧光粉在616 nm处的发光强度达到最大。 在引入Si4+离子后能显著增强Zn1-xMoO4∶Eu3+x的发光强度, 组成为Zn0.80Mo0.97Si0.03O4∶Eu3+0.20样品(激发峰值为393 nm)的荧光强度要比Y2O2S∶Eu3+0.05荧光粉的发光强度强2倍。 所以这种荧光物质能够更好地适用于白光LED。  相似文献   

20.
Linear dichroism experiments show that exciton–polariton ground states are split into a linearly polarized doublet. At normal incidence and zero detuning this splitting does not exceed 10 μeV for the upper polariton branch and 3 μeV for the lower one. For both branches the splitting decreases with positive and negative detuning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号