首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hybrid organic–inorganic resin matrix, i.e., hexa[3,4-dicyano]-phenyl phosphonitrile trimer (HPPT) has been prepared by the reaction of hexachlorophosphonitrile and 4-hydroxyphthalonitrile in the presence of sodium hydride which on heating at 300 °C yielded a high-temperature-stable highly crosslinked hybrid resin (C-HPPT). The elemental analysis (C, H, and N), FTIR, and 1H and 13C-NMR studies were used to characterize the synthesized hybrid resin. The thermal analysis studies viz. TG and DSC were also carried out to determine the thermal stability and glass transition temperature of the cured resin. The isothermal study of the cured resin after 300 h at 300 °C showed only a mass loss of 4.36%.  相似文献   

2.
Nitrogen-containing carbon aerogel was prepared from resorcinol–melamine–formaldehyde (R–M–F) polymer gel precursor. The polymer gel was supercritically dried with CO2, and the carbonization of the resulting polymer aerogel under nitrogen atmosphere at 900 °C yielded the carbon aerogel. The polymer and carbon aerogels were characterized with TG/DTA–MS, low-temperature nitrogen adsorption/desorption (??196 °C), FTIR, Raman, powder XRD and SEM–EDX techniques. The thermal decomposition of the polymer aerogel had two major steps. The first step was at 150 °C, where the unreacted monomers and the residual solvent were released, and the second one at 300 °C, where the species belonging to the polymer network decomposition could be detected. The pyrolytic conversion of the polymer aerogel was successful, as 0.89 at.% nitrogen was retained in the carbon matrix. The nitrogen-doped carbon aerogel was amorphous and possessed a hierarchical porous structure. It had a significant specific surface area (890 m2 g?1) and pore volume (4.7 cm3 g?1). TG/DTA–MS measurement revealed that during storage in ambient conditions surface functional groups formed, which were released upon annealing.  相似文献   

3.
Carbon nanotube (CNT) Buckypapers can be infused with resin and easily incorporated into conventional fiber reinforced composites. In this paper, we propose to use Buckypaper (BP) as a new measuring method to determine the glass transition temperature of polymeric composites. The CNT-only BP was fabricated by spray-vacuum filtration method with monodispersion of multi-wall carbon nanotubes, and then co-cured with polymeric composites. After manufacturing, the glass transition temperature of polymeric composites could be obtained from the relationship between resistance and temperature of BP during the dynamic heating process. Experimental results show that the glass transition temperature of composite samples A and B monitored by BP sensors were 127 °C and 180 °C, while such temperatures obtained from a dynamical mechanical analyzer (DMA) were 128 °C and 184 °C respectively. This paper not only reveals the ability of BP as a sensor for monitoring the glass transition temperature of composite but also provides a new way to understand the glass transition phenomenon of composite.  相似文献   

4.
The dielectric response of ZnO/epoxy resin nanocomposites was studied by means of dynamic electrical thermal analysis in the frequency range of 10?1 to 107 Hz, and over the temperature range of 30–160 °C, varying the content of the reinforcing phase. Scanning electron microscopy pictures were used for assessing the composites morphology and for examining the particles’ dispersion. The thermal properties of nanocomposites were examined by differential scanning calorimetry in the temperature range of 0–170 °C. Dielectric data were analyzed via dielectric permittivity and electric modulus formalisms. Recorded relaxation phenomena include contributions from both the polymeric matrix and the presence of the reinforcing phase. Processes related to the polymer matrix are attributed to the glass to rubber transition (α-relaxation) of the epoxy resin and local motions of polar side groups of the main polymer chain (β-relaxation). Finally, the slower process appearing at low frequencies and high temperatures, originates from interfacial phenomena due to the accumulation of unbounded charges at the system’s interface.  相似文献   

5.
The fabrication and electrochemical response characteristics of four novel potentiometric sensors for determination of pyrilamine maleate (PyraH) were described. The sensors include polymeric membrane electrodes (PME1, PME2) and carbon paste electrodes (CPE1, CPE2). The fabricated sensors were based on the ion-pair of pyrilamine with sodium tetraphenylborate (NaTPB) and ammonium reineckate (NH4RN) using dibutyl phthalate (DBP) as plasticizing solvent. The sensors showed linear, stable and near-Nernstian slopes of 56.4 ± 0.4, 54.2 ± 0.2, 58.8 ± 0.3 and 57.9 ± 0.4 mV decade?1 at 25 ± 0.1 °C and detection limits of 2.0 × 10?5, 1.8 × 10?5, 1.0 × 10?5 and 9.5 × 10?6 mol L?1 for PME1, PME2, CPE1 and CPE2 sensors, respectively. The response time was less than 10 and 8 s for polymeric membrane and carbon paste sensors. The proposed sensors displayed good selectivity for pyrilamine with respect to a number of common inorganic and organic species. The thermal temperature coefficients of the investigated sensors were 0.9508, 0.7012, 0.9450 and 0.6497 mV °C?1. Modified carbon paste sensors showed lower detection limits, higher thermal stability and faster response time than those of polymeric membrane sensors. The proposed sensors displayed useful analytical characteristics for determination of pyrilamine in pharmaceutical preparation and biological fluids (Human urine and plasma).  相似文献   

6.
To get a high sulfur loaded porous carbon/sulfur cathode material with an excellent performance, we investigated four different sulfur loading treatments. The samples were analyzed by the Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD) patterns, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). We proved that it is more effective to introduce the sulfur into the pores of porous carbon at 300 °C than at 155 °C. Especially, the porous carbon/sulfur composite heated in a sealed reactor at 300 °C for 8 h presents a fine sulfur load with sulfur content of 78 wt.% and exhibits an excellent electrochemical performance. The discharge capacity is 760, 727, 744, 713, and 575 mAh g?1 of sulfur at a current density of 80, 160, 320, 800, and 1,600 mA g?1 based on the sulfur/carbon composite, respectively. What is more, there is almost no decay at the current density of 800 mA g?1 for 50 cycles and coulombic efficiency remains over 95 %.  相似文献   

7.
Thermal degradation of epoxy composites filled with various carbon materials (thermally expanded graphite, multiwalled carbon nanotubes) was studied. The dynamics of the thermal degradation of epoxy composites was evaluated by thermogravimetric analysis in the temperature range of 55–700°С (heating rate 10 deg min–1) in an oxidizing medium. Carbon fillers were studied by scanning electron microscopy, transmission electron microscopy, and low-temperature nitrogen adsorption. The influence of the composite preparation procedure on its thermal stability was determined. The type of filler significantly influences the thermal oxidative degradation of the composites.  相似文献   

8.
Current optical polymeric materials for advanced fiber laser development are susceptible to degradation due to the heat generated in high power usage. A suitable replacement light stripping material was explored to overcome this problem by examining optical and physical properties such as transmission/absorption, refractive index, thermal conductivity, and thermal stability. The synthesis and characterization of two new polyurea/silica ORMOSILs (ORganically MOdified SILicates) suitable for high temperature (up to 300 °C) optical applications are reported herein. A one-pot, room temperature synthesis is based upon commercially available bis-isocyanates and an amino-silane. These materials exhibit the combined traits of both glass and polymer by displaying optical clarity over a wide range of wavelengths stretching from the edge of the UV (250 nm) to well into the NIR (2,000 nm), refractive indices in the visible spectrum (n = 1.50–1.63), thermal conductivities of 0.26 ± 0.09 W/mK (ORMOSIL-A) and 0.27 ± 0.07 W/mK (ORMOSIL-B), and thermal stabilities up to 300 °C. The hybrid materials were found to be easily processed into films but thick casts (>2 mm) were subject to increased rates of cracking and longer curing times. Although this is typical of sol–gel chemistries, the organic constituents of ORMOSILs reduce this effect as compared to purely inorganic sol–gels. The effect of thermal aging on the materials’ properties will also be presented as well as a comparison of these materials and the current state of the art light stripping material.  相似文献   

9.
Graphene nanoplatelets (GNP) and polyphenylene sulfide (PPS) were used as filler and matrix, respectively, to produce composites. The PPS/GNP thermal composites were prepared via a melt blending method. The effects of GNP on crystallization behavior and kinetics, morphology, and thermal properties of PPS/GNP composites were investigated. To determine the isothermal crystallization kinetics parameters and isothermal crystallization activation energy, the Avrami model was used to comparatively analyze the relevant DSC experimental data. The results show that GNP provides an obvious heterogeneous nucleation effect on PPS to accelerate the crystallization and decrease isothermal crystallization activation energy. Thermal conductivity values of PPS/GNP composites with various GNP contents revealed that GNP remarkably increases thermal conductivity of composites mainly via a layered dispersion in PPS matrix. Thermal conductivity also increased with increasing GNP content, which was further improved at elevated temperatures. The thermal conductivities of PPS composite containing 30 mass% of GNP were 1.156 and 1.350 W m?1 K?1 at 30 and 110 °C, respectively, indicating an increase of more than 3 times compared with the neat PPS.  相似文献   

10.
PMR (polymerization of monomer reactants) -15 was formulated to use as a matrix resin for high performance carbon fiber-reinforced composite materials. Monomers for the PMR-15 were characterized using Fourier transform infrared spectroscopy. Molecular weight change during cure was investigated using gel permeation chromatography. Thermal analysis was carried out to investigate glass transition and thermal degradation. Cure behavior of a glass/PMR-15 prepreg was investigated using a dynamic mechanical analyzer. Flexural strength of a cured carbon/PMR-15 composite was affected by cure temperature and pressure. The morphology of the cured carbon/PMR-15 was affected by cure conditions as well as by the surface conditions of the carbon fibers. A scanning electron micrograph of the composite made of untreated carbon fibers showed a void-trapped morphology.  相似文献   

11.
A new class of photosensitive aromatic polymers containing disilane units was successfully synthesized from new disilane-based monomers such as 1,2-bis(diethylamino)tetramethyldisilane and 1,2-bis(p-aminophenyl)tetrarnethyldisilane. The disilane-contain-ing aramids and polyimides had glass transition temperatures above 190°C, and all the polymers were thermally stable up to 300°C in air. The polymers were photosensitive; their molecular weight decreased rapidly upon ultraviolet light irradiation. The photosensitive polymers, especially the soluble polyimides having diphenyl sulfone units, were potential candidates for positive working photoresist materials. New highly branched polysiloxane star-burst polymers were synthesized by a siloxane synthetic reaction starting from tris[(phenyldimethylsiloxy)dimethylsiloxy]methylsilane and bis[(phenyldimethylsiloxy)methylsiloxy]dimethylsilanol as the initial core (G0-Ph) and the building block, respectively. Thus, the first generation polymer G1-Ph, second generation polymer G2-Ph, and third generation polymer G3-Ph had 6, 12, and 24 phenylsilyl groups in their exterior layers. The formation of the siloxane-based starburst polymers were confirmed by means of 1H-, 13C-, and 29Si-NMR spectroscopy. These polysiloxane starburst polymers were suggested to have spherical structure. Some functionalized starburst polymers were further synthesized by the introduction of functional groups in their exterior layers. New silica-polyimide hybrid materials were prepared by the sol-gel process through the hydrolysis-condensation reactions of tetraethoxysilane in the presence of the polyamic acid (polyimide precursor) in dimethylacetamide, followed by heating at 270°C. The hybrid system having silica content up to 70 wt% had good quality films. The spherical silica particles were dispersed homogeneously in the polyimide matrix. With increasing silica content, the glass transition temperature and decomposition temperature, as well as the modulus of the hybrid films, increased, while the coefficient of thermal expansion decreased.  相似文献   

12.
Proton conductive inorganic–organic hybrid membranes were synthesized from Epoxycyclohexylethyltrimethoxysilane (EHTMS) and 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) by the sol–gel method. In this paper, the effect of gel temperature, membrane-forming temperature and Si/P on hybrid membranes performance were discussed. FT-IR studies revealed the phosphonic acid was chemically bonded to the siloxane network. When the membrane-forming temperature is 150 °C, thermal analysis including TG and DTG confirmed that the hybrid membranes were thermally stability up to 250 °C and SEM images showed that the membranes surface smooth and dense, eliminating the phase separation phenomenon. The hybrid membranes with a molar ratio of Si/P = 6/1 possess better thermal stability and preferable flexibility.  相似文献   

13.
Alkaline earth stannates have recently become important materials in ceramic technology due to its application as humidity sensor. In this work, alkaline earth stannates doped with Fe3+ were synthesized by the polymeric precursor method, with calcination at 300 °C/7 h and between 400 and 1100 °C/4 h. The powder precursors were characterized by TG/DTA after partial elimination of carbon. Characterization after the second calcination step was done by X-ray diffraction, infrared spectroscopy, and UV?Cvis spectroscopy. Results confirmed the formation of the SrSnO3:Fe with orthorhombic perovskite structure, besides SrCO3 as secondary phase. Crystallization occurred at 600 °C, being much lower than the crystallization temperature of perovskites synthesized by solid state reaction. The analysis of TG curves indicated that the phase crystallization was preceded by two thermal decomposition steps. Carbonate elimination occurred at two different temperatures, around 800 °C and above 1000 °C.  相似文献   

14.
This article presents the thermal degradation behavior of hybridized kenaf (bast)/pineapple leaf fiber (PALF) reinforced high density polyethylene (HDPE) composites by thermogravimetric and derivative thermogravimetric analyses (TG/DTG) with respect to the proportions of fiber in the composite, variation in fiber loading and fiber length. It was observed that the thermal decomposition of all the samples had taken place within the scheduled temperature range of 35?C615?°C. For hybrid composites prepared at 40% fiber loading, the initial peak between 236.9 and 331?°C corresponds to a mass loss of between 23 and 26%, and expectedly, PALF composite and 1:1 hybrid composite have the highest mass lost at this point. Main decomposition temperature as revealed from DTG curves occurred around 467?°C for all except composite prepared with 0.75 and 2?mm fiber length. The mass loss at this temperature was between 64.4 and 73.7%. However, at 464.87?°C, around 98% of neat HDPE had already degraded. Decomposition temperature of other composites was a little higher than the temperature at which HDPE concluded decomposition. Kenaf composite on its own showed initial thermal resistance, but above 240?°C, a sharp increase in decomposition occurred with temperature. Interestingly, hybridization took care of this. Kenaf and PALF composite have shown weaker thermal stability compared to neat HDPE at lower temperatures. The introduction of more fiber into the matrix at onset caused the thermal stability of the hybridized composite to decrease. This reduction in thermal stability of the hybrid with increase in fiber loading became obvious after the dehydration process. Decomposition of hybrid composite is directly proportional to increase in fiber loading. However, at 385?°C, where neat HDPE started decomposing, the percentage degradation of the hybrid showed inverse proportionality with increase in fiber loading. As observed, the size of the lignin and hemicelluloses shoulders in DTG curves deepen with increase in fiber loading, an indication of increased presence with increase in fiber loading.  相似文献   

15.
In this research, the sol–gel technology was applied for the preparation of solid-phase microextraction fibers for extracting of methyl tert-butyl ether (MTBE) from environmental water samples. For this purpose, two different polymers such as poly(ethylene glycol) (PEG) and combination of PEG and multiwall carbon nanotubes (MWCNTs) were prepared using sol–gel technology as coating procedure for the fibers. The pre-concentration process followed by GC–FID determination was used and the results evidenced that pre-concentration factor for PEG/CNTs fiber was approximately five times higher than PEG. Parameters affecting the extraction efficiency such as temperature, extraction time, stirring speed and salt effect for each fiber were investigated and optimized. On the optimal conditions, the linear range for MTBE with PEG and PEG/CNT fibers were 10–3,000 and 1–1,000 ng mL?1 and the detection limits (S/N = 3) were 1.0 and 0.3 ng mL?1, respectively. The sol–gel PEG/CNTs fiber has good performance and therefore relatively better figures of merit and experimental results such as thermal stability (up to 320 °C), average of life time (over 150 times) and repeatability (RSD < 4) in comparison to conventional PDMS/Carboxen fiber, which was already reported for determination of MTBE.  相似文献   

16.
Pristine multiwalled carbon nanotubes (MWCNTs) were impregnated in acrylonitrile butadiene rubber (NBR) using internal dispersion kneader and two roller mixing mill to investigate the effects of various nanotubes concentrations on the thermal transport/stability of rubber nanocomposites. Thermal conductivity (λ N) and thermal impedance (R) measurement experimental setups were established according to ASTM E1225-99 and D5470-03. The 1 mass % addition of MWCNTs in the polymer matrix has enhanced R up to 44 % and reduced λ N of the rubber nanocomposite up to 40 % compare to the base composite formulation. Thermal decomposition and differential thermal analyses of the fabricated composite specimens simulate that the thermal stability and endothermic capability are augmented with increasing the nanotubes contents in the host matrix. The progressive incorporations of carbon nanotubes into the rubber matrix have efficiently influenced the composite specimens regarding glass transition, crystallization, and melting temperatures including their specific enthalpies. Scanning electron microscopy along with the energy dispersive spectroscopy was used to analyze MWCNTs dispersion in NBR matrix, compositional analysis of the nanocomposite, and impregnated nanotubes.  相似文献   

17.
The thermo-optic characteristics of the transparent glass fabric composite and matrix resin have been investigated. The inorganic–organic hybrid materials modified with sulfur are synthesized as transparent matrix resin with the same refractive index and Abbe number as glass. The optical characteristics of the transparent composite relate to temperature due to the fact that the thermo-optic coefficient (dn/dT) for glass fiber (1.00 × 10−5K−1) is different to that of inorganic–organic hybrid materials (−1.99 × 10−4K−1). As the temperature increases, the transparent composite gradually becomes opaque and hazy due to the increased difference in the refractive index between the glass fiber and the matrix. The change in optical characteristics is reversible, meaning that the transparent composites can be used in for various applications in optical devices.  相似文献   

18.
In this study, a hybrid nanopaper consisting of carbon nanofiber (CNF) and polyhedral oligomeric silsequioxane (POSS) or cloisite Na+ clay, has been fabricated through the papermaking process. The hybrid nanopaper was then coated on the surface of glass fiber (GF) reinforced polymer matrix composites through resin transfer molding (RTM) process. The morphologies of the hybrid nanopaper and resulting nanocomposites were characterized with scanning electron microscopy (SEM). It can be seen that the nanopaper had a porous structure with highly entangled carbon nanofibers and the polyester resin completely penetrated the nanopaper throughout the thickness. The thermal decomposition behavior of the hybrid nanopapers and nanocomposites was studied with the real‐time thermogravimetric analysis/ flourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of pristine nanoclay increased the thermal stability of the nanopaper, whereas the POSS particles decreased the thermal stability of the nanopaper. The fire retardant performance of composite laminates coated with the hybrid nanopaper was evaluated with cone calorimeter tests using a radiated heat flux of 50 kW/m2. The cone calorimeter test results indicate that the peak heat release rate (PHRR) decreased dramatically in composite laminates coated with the CNF‐clay nanopaper. However, the PHRRs of the CNF‐POSS nanopaper coated composite laminates increased. The formation of compact char materials was observed on the surface of the residues of the CNF‐clay nanopaper after cone calorimeter test. The flame retardant mechanisms of the hybrid nanopaper in the composite laminates are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Polymer (XAD7HP)/Ti4+ nanocomposites were prepared through the swelling of polymer in titanium (IV) ethoxide as a titanium dioxide precursor. The nanocomposite beads exhibit relatively high porosity different than the porosity of the initial polymer. Thermal treatment of composite particles up to 200 °C in vacuum causes the change of their internal structure. At higher temperature, the components of composite become more tightly packed. Calcination at 600 °C and total removal of polymer produce spherically shaped TiO2 condensed phase as determined by XRD. Thermally treated composites show the substantial change of pore dimensions within micro- and mesopores. The presence of micropores and their transformation during thermal processing was studied successfully by positron annihilation lifetime spectroscopy (PALS). The results derived from PALS experiment were compared with those obtaining from low-temperature nitrogen adsorption data.  相似文献   

20.
The influence of polypropylene (PP) fibers on thermal behavior of concrete at elevated temperatures was studied by simultaneous thermal analysis. Two kinds of polypropylene fibers differing in form and size were applied as fillers. Special emphasis was given on the thermal behavior of PP fiber-reinforced concrete subjected to heat treatment, i.e., at 200 and 300 °C. Thermal events of concrete samples with and without fibers were characterized. In comparison to concrete sample without fibers, the results showed that the presence of polypropylene fibers affected the thermal stability of concrete samples. It was found that the influence of the kind and the amount (1.8 vs. 3.0 kg m?3) of PP fiber on the thermal stability of concrete samples was not significantly pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号