首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy/glass fiber (EP/GF) composite laminate, with the aim of improving the overall composite mechanical performance. Different mechanical characterization techniques were used to determine the mechanical performance, including: tensile stress strain, double cantilever beam (DCB) mode-I fracture toughness and dynamic mechanical thermal analysis (DMTA). Scanning electron microscopy (SEM) was used to support the results and conclusions. The results demonstrated remarkable enhancements in the mechanical performance of EP/GF composite laminates by incorporation of functionalized graphene oxide (FGO) nanofiller, whilst the mechanical performance of the GO reinforced composite only improved marginally. Finally, the mechanical performance of the EP/GF/FGO multi-scale composites was found to be dependent on the type of FGO functional groups; of which EDA exhibited the highest performance. These investigations confirmed that the EDA-FGO-reinforced EP/GF composites possess excellent potential to be used as multifunctional engineering materials in industrial applications.  相似文献   

2.
This paper reports on the testing and development of a polypropylene (PP) nanocomposite systems with improved flame retardancy. The work utilizes the unique properties of sepiolite nanoclay (Sep) in combination with carbon nanotubes (CNTs) in order to develop an optimized ternary nanocomposite system. Thermogravimetric analysis (TGA) showed significant improvements to the residual char towards the later stages of the thermal ramp. The pyrolysis combustion flow calorimeter (PCFC) was employed to screen the various PP composites with respect to their potential flammability performance. The heat release capacity, which is an indicator of a materials fire hazard, did not show any reduction with the addition of nanofillers using the apparatus standard testing procedure. However, this changed by switching to a lower burn within the PCFC's furnace; this diverted oxygen to the pyrolysing sample. Using the results gained from TGA and the PCFC, the optimized ternary nanocomposite system (10 wt.% Sep + 2 wt.% CNT) was compounded on a larger scale and tested in the cone calorimeter. This showed a significant reduction of 82% in peak heat release rate in comparison to unfilled PP. Comparisons were also made between the testing of these samples in the PCFC and cone calorimeter. The main objectives were to develop a flame‐retardant PP nanocomposite ternary system as well as assessing the PCFC with traditional techniques. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The tribological properties are one of the most significant properties in many automobile components such as clutch plate, break shoe, engine liner, piston pin, etc. At present work, attempt on nano clay is loaded with natural fibers (sisal and jute), artificial fiber (E‐glass), and epoxy resin. In this investigation, the specific wear rate and coefficient of friction are analyzed by pin on disc apparatus under dry sliding conditions. The experiment design carried by Box–Behnken design on design of experiment techniques with influence wear parameters, namely, filler content, applied load, sliding distance, and sliding velocity; its responses are analyzed by response surface methodology. The regression mathematical models performed for all the responses, and the most influential factors determined by analysis of variance technique, S/N ratio. The results indicate that the coefficient of friction and specific wear rates are minimized with the addition of filler content to the developed composites and further increasing, the response of composites may be varied. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were prepared by in situ polymerization. Transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were used to characterize the PANI/MWNT composites. Thermal stability and glass transition temperature (T g) were measured by thermogravimetry (TG) and temperature modulated differential scanning calorimetry (TMDSC), respectively. The TG and derivative thermogravimetry (DTG) curves indicated that with augment of MWNTs content, the thermal stability of PANI/MWNT composites increased continuously. While, T g increased and then decreased with the MWNTs content increasing from 0 to 20 mass%.  相似文献   

5.
Natural fiber is well‐known reinforcement filler in polymer‐matrix composites. Composite components like organic polymers and natural fibers are natural fire conductors as the natural fiber consists of cellulose, hemicellulose, and lignin, and hence are as highly flammable as wood. Natural fiber reinforced composite materials are progressively being used in a variety of applications where their fire response is a hazardous consideration, for example, in the automotive (transportation) and building‐construction industries. As a result, an awareness of their performance or response during a fire and the use of conventional fire retardants are of great importance, as they are subject to thermal decomposition when exposed to intensive high heat or fire sources. In this review paper, fire flammability is the main concern for cellulosic and non‐cellulosic fiber‐reinforced polymer composites, especially epoxy composites. This paper reviews the literature on the recent developments in flammability studies concerning polymers, epoxy polymers, cellulosic‐fibers, and non‐cellulosic fiber‐reinforced epoxy bio‐composites. The prime objective of this review is to expand the reach of “fire retardants for polymer materials and composites” to the science community, including physicists, chemists, and engineers in order to broaden the range of their applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Maleated styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) and epoxy monomer, individually or in combination, are used to toughen polyamide 6/glass fiber composites. The epoxy monomer enhanced interaction between polyamide 6 and glass fiber. SEBS-g-MA rubber is uniformly dispersed in polyamide 6 matrix caused by the preferred compatibilizing reaction between the anhydride group of rubber and the amine terminal group of polyamide 6. The addition of epoxy does not affect the fine dispersion of SEBS-g-MA. Polyamide 6/glass fiber binary composites are brittle. The addition of epoxy monomer alone does not change their brittle features. Similarly, in the absence of epoxy monomer, adding 20 wt % of SEBS-g-MA to polyamide 6/glass fiber composites does not greatly increase the tensile ductility. Only when both SEBS-g-MA and epoxy monomer are present in some combination, do the polyamide 6/glass fiber composites show prominent ductile characteristics, such as stress-whitening and necking. This synergistic effect of epoxy monomer and SEBS-g-MA also imparts higher notched impact strengths to the ternary composites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1448–1458, 2007  相似文献   

7.
Qi  Yanni  Zhang  Jian  Qiu  Shujun  Sun  Lixian  Xu  Fen  Zhu  Min  Ouyang  Liuzhang  Sun  Dalin 《Journal of Thermal Analysis and Calorimetry》2009,98(2):533-537
Journal of Thermal Analysis and Calorimetry - Polyaniline/NiO (PANI/NiO) composites were synthesized by in situ polymerization at the presence of HCl (as dopant). FTIR, TEM and XRD were...  相似文献   

8.
Thermal stability and flammability of silicone polymer composites   总被引:1,自引:0,他引:1  
Silicone polymer composites filled with mica, glass frit, ferric oxide and/or a combination of these were developed as part of a ceramifiable polymer range for electrical power cables and other high temperature applications. This paper reports on the thermal stability of polymer composites as determined by thermogravimetric techniques, thermal conductivity and heat release rate as measured by cone calorimetry. The effects of fillers on thermal stability and flammability of silicone polymer are investigated. Of the fillers studied, mica and ferric oxide were found to have a stabilising effect on the thermal stability of silicone polymer. Additionally, mica and ferric oxide were found to lower heat release rates during combustion, but only mica was found to increase time to ignition.  相似文献   

9.
采用溶液共混法及层压成型的方法制备了多壁碳纳米管/玻璃纤维/含双邻苯二甲腈的苯并噁嗪树脂复合材料,并考察了该纳米复合材料的力学及电学性质。材料的渗滤阀值为碳纳米管含量为0.7%,此时,材料也表现出最好的机械性能。通过扫描电镜对材料的断面进行了考察,发现在碳纳米管含量为0.7%时形成了网状结构,因此此时复合材料表现出最好的电学及力学性质。复合材料在碳纳米管含量低于7%时具有很低的吸水性。  相似文献   

10.
In the present study, the tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures were investigated by both micro- and macromechanical test methods. In the micromechanical studies, a single fiber fragmentation test was employed for measuring the interfacial shear strength at fiber-polypropylene interface in the temperature range from 23 °C to 90 °C. The results show that interfacial shear strength decreases with increasing testing temperature. In the macromechanical studies, experimental results show that the elastic modulus of polypropylene and transverse elastic modulus of composites are sensitive to the testing temperature. The weakened fiber-polypropylene interface due to elevated temperatures led to the vanishing of “knee” in transverse tensile stress-strain curves. A function was proposed to evaluate the dependence of the elastic modulus of quasi-unidirectional glass fiber/polypropylene composites on the testing temperatures and tested against experimental data. Tensile failure mechanisms of composites were demonstrated to evolve with the testing temperature.  相似文献   

11.
Organoclay nanocomposites were prepared by ultrasound‐assisted solution intercalation technique based on polystyrene containing brominated epoxy and a combination of brominated epoxy and antimony oxide. Aspects of nanomorphology and nanodispersion were investigated by X‐ray diffraction and transmission electron microscopy whereas flammability and reaction to fire were evaluated using limiting oxygen index, UL‐94, and mass loss calorimeter tests. Polystyrene/brominated‐epoxy‐blend‐based nanocomposites showed mixed intercalated–exfoliated nanomorphology where polymer‐intercalated crystallites predominantly exist in polystyrene matrix and exfoliated silicate layers reside on polystyrene/brominated epoxy phase boundaries and within brominated epoxy domains. Organoclay was found to impart a compatibilization effect on polystyrene and dispersed brominated epoxy, which facilitates uniform distribution of a fine flame‐retarding phase within the matrix. With the reduction of the rate at which decomposition products evolve into the gas phase, organoclay nanocomposites showed notable reductions in peak heat release rate and increases in limiting oxygen index. The gas‐phase hot radical entrapment by halogenated flame‐retardant system was coupled with the condensed‐phase physical action of nanodispersed organoclay, which increased the overall fire‐retardant effectiveness. Fire‐retardant mechanisms of nanocomposites based on polystyrene/brominated epoxy blends were attributed to nanoconfinement and tortuous pathway effects of organoclay rather than to carbonaceous char formation proposed earlier for polystyrene/organoclay systems without conventional flame retardants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The influence of untreated and treated fique fibers on the crystallization process and thermal degradation of different thermoplastic matrix composites has been evaluated. The fique fibers have been treated with different chemicals according with the type of thermoplastic matrix employed. Additionally, a copolymer of poly(propylene) with maleic anhydride (MAPP) has been used as compatibilizer. The treatments introduce an increment on the thermal stability of fique fibers respect to untreated fibers. Crystallization is affected by the presence of fique fibers showing important differences for each type of composites. Fiber presence has an important influence on the matrix morphological characteristics, as observed by dynamical mechanical analysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Commercial bentonite (BFN) and organoclay (WS35), as well as iron oxide/clay composite (Mag_BFN) and iron/oxide organoclay composite (Mag_S35) were prepared for toluene and naphthalene sorption. Mag_BFN and Mag_S35 were obtained, respectively, by the precipitation of iron oxide hydrates onto sodium BFN and S35 clay particles. The materials were characterized by powder X-ray diffraction (XRD), X-ray Fluorescence (XRF), and TG and DTA. From XRF results and TG data on calcined mass basis, a quantitative method was developed to estimate the iron compound contents of the composites, as well as the organic matter content present in WS35 and Mag_S35.  相似文献   

15.
Electron spin resonance (ESR) investigations of line shapes and radical decay behavior have been made on an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber, and T-300/5208 (graphite fiber/epoxy) composites after irradiation with Co60 γ-radiation or 0.5 MeV electrons. Two kinetically distinct radical species are found in the irradiated epoxy as the temperature is raised beyond 120 K following irradiation of samples at 77 K with Co60 γ. One has been termed a fast-decaying species and the other a slow-decaying species. The ratio of fast-decaying/slow-decaying radicals increases as the decay temperature rises. The fast-decaying radicals at room temperature are attributed largely to alkyl type radicals residing in regions of relatively low crosslink density, while the long-lived radicals are attributed to radicals residing in the highly crosslinked regions of the epoxy. A large concentration (ca. 1020 to 1021 spins/g) of unpaired electrons was found in unirradiated graphite fiber which masked the ESR spectral change in irradiated composites.  相似文献   

16.
The effect of the addition of methyl ethyl ketone peroxide (MEKP) and cobalt naphthenate (CoNaph) on the mechanical behavior of epoxy vinyl ester resin (EVER) laminates has been investigated by using a factorial experimental design, in which the MEKP and NaphCo contents were varied. Previous results showed that there is an interaction effect between the process variables analysed on the mechanical properties evaluated. It was also observed that the MEKP/CoNaph ratio affected the tensile behavior of the EVER/glass fiber composites.  相似文献   

17.
In this work ternary composites based on an epoxy thermoset modified with a thermoplastic polymer and reinforced with glass fibers were prepared. The aim of this study is to analyze the influence of the molecular weight of the thermoplastic polymer on the final morphologies. To obtain tailor made interphases four poly(methylmethacrylate), PMMA, which differ in their molecular weight (34,000, 65,000, 76,000 and 360,000 g/mol) were chosen to modify the epoxy resin. The amount of PMMA in the composites was fixed to 5 wt.%. Neat polymer matrices (epoxy-PMMA without fibers) were also prepared for comparison. To study all systems dynamic mechanical analysis (DMA), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used. Although all the systems showed the typical phase separation in the epoxy/PMMA blend, DMA experiments revealed a new phase with more restricted mobility when the glass fibers are present. The amount of this phase increases as molecular weight of PMMA does. The morphologies as well as the fracture surface in the immediate surroundings of the fibers were found to be different from those observed further away from the surface of the fiber, suggesting therefore that, in this case, different fracture mechanism operates. These observations allow us to conclude that an interphase with specific properties is formed. This interphase is based on a polymer or a polymer blend (epoxy-PMMA) enriched in the component with lower mobility.  相似文献   

18.
19.
Bio-based bacterial cellulose (BC) epoxy composites were manufactured and their mechanical properties were examined. The BC was initially fabricated from Vietnamese nata de coco by means of alkaline pretreatment followed by solvent exchange. The obtained fibers were dispersed in epoxy resin (EP) by both mechanical stirring and ultrasonic techniques. The resulting blend was used as the matrix for glass-fiber (GF) composite fabrication using a prepreg method followed by multiple hot-press-curing steps. The morphology, mechanical characteristics and mode-I interlaminar fracture toughness of the fabricated composites were investigated. With a 0.3-wt% BC content, the mode-I interlaminar fracture toughness for both crack initiation and crack propagation were improved by 128.8% and 1110%, respectively. The fatigue life was dramatically extended by a factor of 12, relative to the unmodified composite. Scanning electron microscopy images revealed that the BC plays a vital role in increasing the interlaminar fracture toughness of a GF/EP composite via the mechanisms of crack reflection, debonding and fiber-bridging.  相似文献   

20.
Thermal analysis of poly-methylmethacrylate (PMMA) impregnated porous gel silica glasses confirms that the PMMA chains form hydrogen bonds with the pore surface silanol groups. The adopted conditions for the insitu polymerisation result in about 4% of residual monomers trapped in the polymer, most of them in the amorphous structure. The polymer and monomer mixture takes up the whole of the free pore volume. Most of the residual monomer polymerises during the DSC scans above the glass transition temperature providing an excellent probe for the weak glass transition. Polymerisation in the gel silica glass medium affects the glass transition temperature, the length of polymer chains, and the degree of polymerisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号