首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrogen-1, carbon-13, and nitrogen-15 NMR study of magnesium(II)-isothiocyanate complexation in aqueous mixtures has been completed. At temperatures low enough to slow proton and ligand exchange, separate1H,13C, and15N NMR signals are observed for coordinated and bulk water molecules and anions. The1H NMR spectra reveal signals for the hexahydrate and the mono-through triisothiocyanato complexes, as well as two small signals attributed to [Mg(H2O)5(OH)]1+ and [Mg(H2O)4(OH)(NCS)]. Accurate hydration numbers were obtained from signal area integrations at each NCS concentration. In the15N NMR spectra, signals also were observed for the mono-through triisothiocyanato complexes, and a small signal believed to be due to [Mg(H2O)4(OH)(NCS)]. Coordination number contributions for NCS were measured from these spectra and when combined with the hydration numbers they totalled essentially six at each anion concentration. Signals for [Mg(H2O)5(NCS)]1+ through [Mg(H2O)3(NCS)3]1– also were observed in the13C NMR spectra and the area evaluations were comparable to the15N NMR results. An analysis of the magnitude and sign of the coordinated NCS chemical shifts identified the nitrogen atom as the anion binding site. All spectra indicated [Mg(H2O)5(NCS)]1+ and [Mg(H2O)4(NCS)2] were the dominat isothiocyanato complexes over the entire range of anion concentrations. The inability to detect evidence for complexes higher than the triisothiocyanato reflects the competitive binding ability of water molecules and perhaps the decreased electrostatic interaction between NCS and negatively charged higher complexes.  相似文献   

2.
Chemical shifts and coupling constants were determined in the15N and13C NMR spectra of thiophene aldoximes with natural isotope content. The effects of Z, E isomerism on the spectral parameters were determined. The2J15N.H and1J13C.H coupling constants in the CH=NOH fragment are characteristic.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 735–738, March, 1991.  相似文献   

3.
A direct, low-temperature hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of lutetium(III)-isothiocyanate complex formation in aqueous solvent mixtures has been completed. At –100°C to –120°C in water-acetone-Freon mixtures, ligand exchange is slowed sufficiently to permit the observation of separate1H,13C, and15N NMR signals for coordinated and free water and isothiocyanate ions. In the13C and15N spectra of NCS, resonance signals for five complexes are observed over the range of concentrations studied. The13C chemical shifts of complexed NCS varied from –0.5 ppm to –3 ppm from that of free anion. For the same complexes, the15N chemical shifts from free anion were about –11 ppm to –15 ppm. The magnitude and sign of the15N chemical shifts identified the nitrogen atom as the binding site in NCS. The concentration dependence of the13C and15N signal areas, and estimates of the fraction of anion bound at each NCS:Lu3+ mole ratio, were consistent with the formation of [(H2O)5Lu(NCS)]2+ through [(H2O)Lu(NCS)5]2–. Although proton and/or ligand exchange and the resulting bulk-coordinated signal overlap prevented accurate hydration number measurements, a good qualitative correlation of the water1H NMR spectral results with those of13C and15N was possible.  相似文献   

4.
15N solid state NMR without enrichment is rarely used because of the low sensitivity and low natural abundance of this nucleus. As demonstrated on different nitrogen-containing polysilanes and polysilazanes, it can be shown that with the CP/MAS technique spectra can be obtained in good quality and within acceptable measuring time. Three main different nitrogen sites – NSi3, NSi2H and NSiH2– can be observed as well as changes in the intensities of these sites with reaction and tempering conditions. Thus the spectra give valuable additional information for a better understanding of the structures and their changes within the investigated systems. Received: 5 May 1998 / Accepted: 8 July 1998  相似文献   

5.
The rate of the15N/14N isotopic exchange between NO−HNO3 at high nitric acid concentration (2–10M) have been measured. The experimental data were obtained by contacting nitric oxide at atmospheric pressure with nitric acid solution labelled with15N, in a glass contactor.  相似文献   

6.
A new alkaloid, ternatine (C24H33NO5), was isolated from aerial parts of theDelphinium ternatum plant. According to the1H,13C NMR, IR, and mass spectra of the base and its triacetate, ternative was assumed to have the structure of 4β-methyl-7α-isobutyryloxy-11α,15β,19β-trihydroxyhetisane. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 187–189, January, 1997.  相似文献   

7.
Conclusions 15N (14N) and17O NMR spectra have been obtained on vinyl ethers of pyridine and quinoline, with unenriched samples. The principal factor determining the chemical shifts is p- conjugation of the unshared pairs of the heteroatom with the unsaturated fragments of the molecule; an additional contribution in the case of the15N signals comes from interaction of the nitrogen atom with a proton through space.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 769–773, April, 1987.  相似文献   

8.
A continuation of the contact ion-pairing studies of the trivalent lanthanides by direct, low-temperature, multinuclear magnetic resonance techniques has been completed for the europium(III)-isothiocyanate system. In water-acetone-Freon-22 solvent mixtures, ligand exchange is sufficiently slow at — 100°C to - 125°C to permit the observation of13C and15N NMR signals for Eu3+-NCS- contact ion-pair complexes. With each nuclide, signals for four complexes are observed, displaced approximately 250 ppm upfield from free anion in the13C spectra, and 2,500 ppm upfield from bulk NCS- in the15N spectra. The concentration dependence of the signal areas is consistent with the formation of Eu(NCS)2+ through Eu(NCS) 4 1- , with water molecules completing the solvation shell. In the15N NMR spectra, the large chemical shifts identified the nitrogen atom as the NCS- binding site. Also, the observation of two15N NMR signals for isomers of Eu(NCS) 2 1+ was possible in several spectra. In methanol, a medium of higher dielectric constant, complex formation was diminished, with signal area integrations confirming the dominance of Eu(NCS) 1 2+ . A comparative binding study of Cl- and NCS- also was made by35C1 NMR chemical shift and linewidth measurements in water-methanol mixtures. The much stronger coordinating ability of NCS- was evident in these experiments, but there is a strong possibility of Eu3+-Cl- ion-pairing in the absence of this anion.  相似文献   

9.
15N NMR chemical shift data are presented for 14 azolopyridines, together with the results of INDO/S-SOS calculations of nitrogen shieldings. Previous 14N NMR results for some of these compounds are reinterpreted. The 14N data and their assignments are shown to be reliable for the indolizine nitrogen atom from arguments based on relative line widths. The pyridine-type nitrogens are more reliably assigned from the 15N spectra combined with the results of the INDO/S-SOS calculations for individual molecules. A combination of 14N and 15N NMR spectra, together with the shielding calculations, provides a basis for unambiguous assignments of all the various nitrogen environments considered.  相似文献   

10.
Each of the compounds [MCl(Pr3)2(ArylNSO)] (M = RhI, IrI; R = i-Pr, Cy: Aryl = C6H5, 4-MeC6H4, 4-ClC6H4, 2,4,6-Me3C6H2 appears to exist as two isomers both in the solid state and in solution. The molecular and single crystal structure of one of the isomers of [RhCl(P-i-Pr)3)2(4-Me6H4NSO)] shows that the N-sulfinylaniline ligand is in the cis-configuration and coordinated to the rhodium atom via the sulfur-atom. The ligand lies in a plane which includes the rhodium atom and is in agreement with the Rh-S distance of 2.10 Å. IR results of the compounds (solid and solutions), 21P NMR data and 15N NMR of a 15N labelled compound, which yielded a 103Rh15N coupling constant of 15.5 Hz, show that in the second isomer the N-sulfinylaniline ligand is probably bonded to the metal atom via the π-NS bond.The ratio of the metal-π-NS bonded isomer and the metal-S bonded isomer decreases in the order Aryl = 4-ClC6H4 > C6H5 > 4-MeC6H4; R = i-Pr > Cy and M = Rh > Ir. The interconversion of the two isomers is intramolecular and becomes observable on the 31P NMR time scale at about 40° C for M = Rh.In the case of [Ir(P-i-Pr3)2(4-MeC6H4NSO)], cyclometallation of the sul- finylaniline is observed via the ortho-carbon atom, whereas cyclometallation via P-i-Pr3 is observed when the ortho-positions are blocked by methyl groups, e.g. when L = 2,4,6-Me3C6H2NSO.  相似文献   

11.
The13C and19F NMR spectra ofZ- andE-isomers of β-X-substituted α,β-difluorostyrenes (X=F, Cl, CpFe(CO)2, Re(CO)5, Re2(CO)9Na) were studied. Direct and long-range (across 1–5 bonds) spin-spin coupling constants and the (13C−12C) isotope shifts in the19F NMR spectra were determined. The study of the13C satellites in the19F NMR spectra of substituted difluorostyrenes permitted assignment of the13C NMR signals of the vinylic carbon atoms. Similarly, the signals in19F NMR spectra were assigned based on coupling constants of fluorine withipso-carbon. These assignments were found to be in good agreement with the data available from the literature (X=F, Cl). The developed approach was applied to the elucidation of the structure ofZ−PhCF=CClFe(CO)2Cp. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya. No. 8, pp. 1575–1579, August, 1998.  相似文献   

12.
A series of aminodiphenylphosphanes 1 [Ph2P‐N(H)tBu ( a ), ‐NEt2 ( b ), ‐NiPr2 ( c )], 2 [Ph2P‐NHPh ( a ), ‐NH‐2‐pyridine ( b ), ‐NH‐3‐pyridine ( c ), ‐NH‐4‐pyridine ( d ), NH‐pyrimidine ( e ), NH‐2,6‐Me2‐C6H3 ( f ), NH‐3‐Me‐2‐pyridine ( g )], 3 [Ph2P‐N(Me)Ph ( a ), ‐NPh2 ( b )], and N‐pyrrolyldiphenylphosphane 4 (Ph2P‐NC4H4) was prepared and studied by NMR (1H, 13C, 31P, 15N NMR) spectroscopy. The isotope‐induced chemical shifts 1Δ14/15N(31P) were determined at natural abundance of 15N by using HEED INEPT experiments. A dependence of 1Δ14/15N(31P) on the substituents at nitrogen was found (alkyl < H < aryl; increasingly negative values). The magnitude and sign of the coupling constants 1J(31P,15N) (positive sign) are dominated by the presence of the lone pair of electrons at the phosphorus atom. The X‐ray structural analysis of 2b is reported, showing the presence of dimers owing to intermolecular hydrogen bridges in the solid state. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:542–550, 2001  相似文献   

13.
The interaction of NO2 with sublimed films ofmeso-tetraphenylporphyrinatozinc was studied by IR and UV-VIS spectroscopy. The π-radical cation (ZnTPP)•+NO2 containing an unpaired electron on HOMO of the A2u symmetry is formed at the first stage of the reaction. The second NO2 molecule attacks themeso-carbon atom to form zinc isoporphyrin with the covalently bound nitro group. The IR data indicate that the NO2 anion is axially coordinated to the central metal atom, and the NO2 group is covalently bonded through the N atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 665–668, April, 1998.  相似文献   

14.
Dihalobridged binuclear complexes [Rh(diolefin)(μ-X)]2 {diolefin = 1,5-cyclooctadiene (cod), X = Cl or Br; diolefin = norbornadiene (nbd), X = Cl}, undergo halide bridge cleavage reactions with multidentate N,N-heterocycles 1,3,5-tris(benzimidazolyl)benzene (L1H3), 1,3,5-tris(N-methylbenzimidazolyl)benzene (L2H3) and N,S-heterocycle 1,3,5-tris(benzothiazolyl)benzene (L3H3) to yield trinuclear heterocycle bridged complexes [{RhX(cod)}3(μ-LH3)] and [{RhCl(nbd)}3(μ-LH3)] (LH3 = L1H3, L2H3, L3H3). 1H NMR exchange measurements have shown resonances for olefinic protons 1″, 2″, 5″ and 6″ of cod at different chemical shifts, perhaps due to restricted Rh–N bond rotation. The olefinic and aliphatic protons would undergo exchange with each other and also with intermediate species. The exchange mechanism may be visualized to involve Rh–N bond breaking, rotation of the cod ligand of the T-shaped (three-coordinate) intermediate species followed by recomplexation. An alternate mechanism may be Rh–cod bond breaking at olefin positions 5″ and 6″, isomerisation of the T-complex such that 5″/6″ moves trans to X coupled with rotation of the heterocycle about the Rh–N bond (made easier by the reduced coordination number of the intermediate), followed by recoordination of 1″/2″ trans to N, followed by recomplexation. NMR signals from the intermediate species in one dimensional 1H, 13C and 2D NMR spectra have supported the exchange of protons.  相似文献   

15.
M(HL)(H2O)n complexes have been obtained by the electrochemical reaction of Fe, Co, Ni, Cu, Zn and Cd anodes with the potentially pentadentate and trianionic asymmetrical Schiff base 3‐aza‐N‐{2‐[1‐aza‐2‐(5‐nitro‐2‐hydroxylphenyl)‐vinyl]phenyl}‐4‐(5‐nitro‐2‐hydroxyphenyl)but‐3‐enamide (H3L), containing a hard amido donor atom. The complexes have been characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopies, magnetic measurements and molar conductivities. Co(HL)(H2O) ( 2 ) has been found to rearrange in DMF solution into a crystallographically solved octahedral complex, CoL1(H2O)2 ( 7 ) [where H2L1 is the symmetrical Schiff base ligand N,N′‐(1,2‐phenylene)‐bis(5‐nitro‐3‐hydroxysalicylidenimine)]. A hydrolysis mechanism is discussed to explain this rearrangement.  相似文献   

16.
For the first time, the14N NMR spectra of nitrofuroxans were investigated, and it was shown that the14N signals are narrow; this allows this method to be utilized analytically. Taking the example of nitrochlorofuroxan, the unusual rearrangement of the 4-nitro isomer to the 3-nitro isomer was found.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1020–1023, May, 1990.  相似文献   

17.
Oxidative coupling of lithium derivatives of the (CO)2PPh3MnC5H4−C5H4Mn(CO)3 complex with CuCl2 results in the formation of four isomeric quatercymantrenyls containing two phosphine ligands. The compounds isolated were characterized by the1H and31P NMR spectra. For Part 5, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 587–590, March, 1997.  相似文献   

18.
The signals in the13C NMR spectra of 2,3,4,5-tetraphenyl-1-germacyclopenta-2,4-dienes (R1=R2=H, Me,cyclo-C3H5, SiMe3, SnMe3, R1=Me, R2=H, Cl) were completely assigned using 2D NMR spectroscopy. The pattern of the variation of the chemical shifts in the13C NMR spectra indicates that the effects of substituents R1 and R2 on the heterocycle and on the phenyl groups are of inductive rather than mesomeric origin and include the direct through-space polarization of bonds (field effect). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1962–1965, November, 1997.  相似文献   

19.
The composition of alkyl radicals (AR) formed by γ-radiolysis (T=77 K) of polycrystallinen-alkanes with different lengths of the carbon chain (C(5), C(7), C(10), C(11), and C(18)) and their polymeric analog (polyethylene) was estimated from the ESR spectra. The ESR spectra of the irradiatedn-alkanes are superpositions of the signals from the H3CC.HCH2− and −CH2C.HCH2− radicals, whose HFS constants with α and β protons as well as the equilibrium conformation are independent of the chain length of then-alkane molecule. A dependence of the concentration of the radicals on the chain length ofn-alkane was found. The absence of the −CH2C.H2 radicals that may arise upon H atom elimination from the Me fragments of then-alkane molecules is most likely related to the transfer of excitation energy from the Me group to the neighboring methylene fragment and the transformation of the −CH2C.H2 radicals into H3CC.HCH2− radicals. With account for this, the concentrations of the AR formed were suggested to be proportional to the number of H atoms at the corresponding C atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1034–1037, June, 2000.  相似文献   

20.
A general synthetic approach for the synthesis of 15N- and 17O-doubly labelled pyrimidine nucleosides is described. The 15N isotopes in uridine and the 17O isotope in the urea-derived carbonyl group of uridine and cytidine originate from (15N2)[17O]urea ( 5 ) which was synthesized from 15NH4Cl, thiophosgene ( 1 ), and H2[17O]. The third 15N isotope of cytidine in 4-position stems from the substitution of the 1,2,4-triazole moiety of (15N2)[O2-17O]uridine derivative 8a/b with 15NH4OH. Hydrolysis of the same key intermediate 8a/b with Na[17O]H/H2[17O] introduced the second 17O isotope into the 4-position of uridine. The 15N- and 17O-NMR spectra of the target compounds 12 and 14 in phosphate-buffered H2O serve as references for heteronuclear NMR spectra of labelled RNA fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号