首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
The annealing behaviors of photoluminescence of SiOx and Er-doped SiOx grown by molecular beam epitaxy in the wavelength range of visible and infrared light are studied. For SiOx, four PL bands located at 510, 600, 716 and 810 nm, respectively, are observed. For Er-doped SiOx, the 716 nm band, which is believed to be originated from the electron–hole recombination at the interface between crystalline Si and amorphous SiO2, disappears in the annealing temperature range of 500–900°C. It is suggested the enhancement of Er luminescence is partially due to the energy transfer from the recombination at the interface between crystalline Si and SiO2 to Er ions.  相似文献   

2.
GaAs/AlGaAs GRIN-SCH type multiple quantum well lasers with four wells of 11 nm GaAs, grown in an MOVPE chimney reactor, exhibit an output power as high as 110 mW/facet (CW, 30°C; 5 μm stripe) and 1.3 W/facet (pulsed, 30°C; 53 μm stripe) until catastrophic optical damage occurs. 2000 hours life tests conducted at 60°C and 15 mW CW show no noticeable degradation for the 5 μm stripe laser with a reflective coating on both facets. Raman spectroscopy on similar multiple quantum well structures with 65 GaAs wells is used to ascertain that the wells have minimum residual aluminum- content.  相似文献   

3.
Amorphous SiOx and SiOx : H films were prepared by thermal evaporation of SiO powder in ultrahigh vacuum or under a flow of hydrogen ions onto silicon substrates maintained at 100°C. Photoluminescence (PL) can be seen in the visible range with the naked eye on the as-deposited samples without post-treatments. Composition and structure investigations were performed by infrared and Raman spectrometry experiments on films annealed at different temperatures. Hydrogen and oxygen bonding was studied by infrared spectrometry. The PL is attributed to the quantum confinement of excitons in a-Si clusters embedded in the a-SiOx matrix. Our results demonstrate that oxygen creates an efficient potential barrier and no further passivation by hydrogen is necessary.  相似文献   

4.
The perovskite-type oxides were synthesized in the series of Ln1−xSrxCoO3(Ln = Sm, Dy). The formation of solid solutions in Dy1 − xSrxCoO3 was limited, compared with that in Sm1 − xSrxCoO3. The electrical conductivities of the sintered samples were measured as a function of x in the temperature range 30 to 1000 °C. The highest conductivity of around 500 S/cm at 1000 °C was found in Sm0.7Sr0.3CoO3. The reactivity of all the samples with YSZ was examined at 800–1000 °C for 96 h. The Sr-doped perovskite oxides were more reactive with YSZ and produced SrZrO3 at 900 °C after 96 h. However, no reaction product between SmCoO3 and YSZ was observed at 1000 °C for 96 h. The cathodic polarization of the oxide electrodes, sputtered on yttria stabilized zirconia (YSZ), was studied at 800–1000 °C in air. SmCoO3 shows no degradation of the electrode performance at higher temperatures. The thermal expansion measurements on the sintered samples were carried out from room temperature to 1000 °C. Large thermal expansion coefficients were found in these samples.  相似文献   

5.
MBE-grown Si/Si1-xGex heterostructures on (100) Si have been characterized by Rutherford backscattering spectroscopy (RBS), ion channeling and X-ray diffraction to investigate defect densities and tetragonal lattice distortion. Critical layer thickness and relaxation of strain by formation of misfit dislocations are strongly dependent on the growth temperature. A Si0.67Ge0.33 layer with a thickness of 2000 Å is found to be still fully strained at a growth temperature of 450°C, whereas the same layer grown at 550°C shows considerable strain relaxation by dislocations. To obtain better depth resolution than with conventional RBS, medium energy ion scattering (MEIS) experiments have been performed on Si/Ge superlattices with layer thicknesses of 10–40 Å. A position-sensitive toroidal electrostatic analyser was employed to detect the backscattered ions simultaneously over an angular range of 30° with an energy resolution of 1 keV FWHM for 250 keV He ions, corresponding to a depth resolution of about 10 Å.  相似文献   

6.
a-Si/insulator multilayers have been deposited on (0 0 1) Si by electron gun Si evaporation and periodic electron cyclotron resonance plasma oxidation or nitridation. Exposure to an O or N plasma resulted in the formation of a thin SiO2 and SiNx layer whose thickness was self-limited and controlled by process parameters. For thin-layer (2 nm) Si/SiO2 and Si/SiNx multilayers no visible photoluminescence (PL) was observed in most samples, although all exhibited weak “blue” PL. For the nitride multilayers, annealing at 750°C or 850°C induced visible PL that varied in peak energy with Si layer thickness. Depth profiling of a-Si caps on thin insulating layers revealed no detectable contamination for the SiNx layers, but substantial O contamination for the SiO2 films.  相似文献   

7.
Oxygen nonstoichiometry and electrical resistance of a series La2−xSrxNiOy solid solutions, where x=0.0, 0.2 and 0.5 in argon flows at oxygen partial pressures 1.5, 10.2, 49.2, 100 and 286 Pa within the temperature range of 20–1050°C were studied. Nickelate oxygen desorption/sorption spectra when heating–cooling at constant rate demonstrated strong dependence of cation composition of the samples. Unlike La1.5Sr0.5NiOy compounds those of La2NiOy and La1.8Sr0.2NiOy have weakly bonded oxygen, capable to exchange reversibly with the gas phase at the temperatures higher than 250°C. The equilibrium values of oxygen nonstoichiometry and specific resistance for the these nickelates were determined at 300–1050°C and pO2=1.5–286 Pa as a functions of temperature versus oxygen partial pressure. All nickelate studied appear to be p-type conductors with metal electric conductivity at equilibrium states.  相似文献   

8.
Si–Ge heterostructures made of 6 monolayers of Si and 4 monolayers of Ge repeated p times (Si6Ge4)p, strained on Si (1 0 0) substrates, have been investigated by photoluminescence measurements and electron microscopy. The films were grown at 400°C by molecular beam epitaxy, using Sb as surfactant. The photoluminescence results of the whole set of samples show similar spectra, for both the single Ge quantum well (p=1) and the thicker heterostructure (p=30). The phonon assisted transverse optical line is measured at about 40 meV far from the no-phonon one, and this corresponds to the Ge–Ge vibration. Our results demonstrate that excitonic recombination occurs mainly in the Ge layers and it is indirect in nature, whatever the repetition number (p) is. Furthermore, we evidenced a high localization of the photoluminescence process excluding any superperiodicity effect.  相似文献   

9.
Tracer diffusion of 18O in dense, polycrystalline La1−xSrxCoO3 for x = 0.1 has been measured in the temperature range 400 to 600 °C and at 500 °C for x = 0.2 at an oxygen partial pressure of 1 × 105 Pa. Depth profiles were obtained by secondary ion mass spectrometry. The diffusion coefficient for La0.9Sr0.1CoO3 is given by D = (17–247) exp[(−232 ± 8 kJ/mole)/RT] cm2/s. This value is several orders of magnitude lower than D extrapolated from the results for x = 0.2 measured in the 700–900 °C temperature range. One possible explanation for the discrepancy is that the two measurements reflect different diffusion paths. As expected, La0.8Sr0.2CoO3 exhibits a higher diffusivity at 500 °C than does La0.9Sr0.1CoO3.  相似文献   

10.
This report describes photoluminescence (PL) properties of PbTe/CdTe single quantum wells grown on (1 0 0)-oriented GaAs substrates by molecular beam epitaxy. Despite the differences in crystal structure and thermal expansion coefficient between PbTe and CdTe, an intense mid-infrared emission was observed even at higher temperatures than 300 K. Multiple peaks, however, were found in the PL spectra, and the analysis of the PL peak energy dependence on temperature revealed an important role of the thermal mismatch.  相似文献   

11.
Photoluminescence (PL) studies of low-energy (60 keV, H+2), proton-implanted InP1-xAsx (0 x 17) crystals doped with Yb are reported. In the implanted samples we observed remarkable intensity reduction of all the PL lines. After annealing, the PL spectra did not recover to their preirradiation values indicating high thermal stability of the generated damage. We have not seen any influence of hydrogen or lattice defects on the shape of the Yb intra-4f-shell luminescence. We show that hydogen-implantation-induced defects stabilize surfaces of InP and InPAs compounds, preventing their decomposition during capless thermal annealing up to 650°C. It is suggested that this enhanced surface stabilization is due to the presence of defects saturated with hydrogen atoms which are bound tightly to the phosphorus atoms.  相似文献   

12.
A series of Zn1−xCoxO thin films with the atomic fraction, x, in the range of 0.03–0.10 were deposited on glass substrates at room temperature by magnetron co-sputtering technique and subsequently coupled with the post-annealing treatment for half hour at different temperatures (350 °C and 500 °C) under vacuum. A systematic study was done on the structural, optical and magnetic properties of Zn1−xCoxO thin films as a function of Co concentration and annealing temperature. X-ray diffraction and UV–vis spectroscopy results indicated that there are not any secondary phases and Co2+ substituted for Zn2+ of ZnO host. Magnetic hysteresis loops were observed at room temperature, indicating that both the as-deposited samples and the annealed ones exhibit the room temperature ferromagnetism. It was also found that the magnetic saturation moment per Co atom decreases with increasing Co concentration, while the post-annealing treatment can enhance the magnetic moment of the films effectively.  相似文献   

13.
InGaN/GaN single quantum well (SQW) structures under various InGaN growth temperatures have been grown by metal organic chemical vapor deposition (MOCVD), the surface morphologies and optical properties are investigated. The radius of the typical V-pits on the SQW surface is affected by the InGaN well-temperature, and the surface roughness decreased as the well-temperature reduced. Room-temperature photoluminescence (PL) and cathode luminescence (CL) shows the quantum well and quantum dot (QD)-like localized state light emission of the SQWs grown at 700 and 690 °C, respectively, whereas the samples grown at 670 and 650 °C present hybrid emission peaks. Excitation power dependent PL spectra indicates the QD-like localized state emission dominates at low excitation power and the quantum well emission starts to take over at high excitation power.  相似文献   

14.
The n = 2 Aurivillius phase Bi2 − xPbxSr1 − xNd2O9 was successfully synthesized as a ceramic material over the whole range of simultaneous, charge compensated substitution x = 0–1.0. Structural investigations were performed by Rietveld refinement applying different space groups Fmmm and A21am, and additionally by X-ray absorption spectroscopy (EXAFS) on the Nd LIII-edge, confirming the accommodation of Nd on the atomic sites of Sr, which implies the substitution of Bi3+ by the isoelectronic Pb2+. The ferroelectric transition temperature Tc = 270 °C of the substituted powders with x = 0.4 and 1.0 is distinctly reduced compared to the unsubstituted sample with Tc = 450 °C. In temperature resolved powder X-ray diffraction patterns no structural phase transition could be detected.  相似文献   

15.
In this study, we present the optical characteristics of A-plane ZnO/ZnMgO multiple quantum wells (MQWs) with different well widths grown on R-plane sapphire substrates by pulsed laser deposition (PLD). The energy gaps of ZnO and ZnMgO have been observed by photoluminescence (PL) and absorption spectra. The electrons confined in the ZnO wells transit from the electron ground sub-band to the heavy-hole ground sub-band (noted as 11H) located at 3.40 and 3.57 eV for the ZnO/ZnMgO MQWs samples with well widths of 5.6 and 1.2 nm, respectively. The strong anisotropic polarization characteristic has been studied by polarization-dependent PL measurements. For comparison, we also calculated the transition energies of different well thicknesses varying from 1 to 6 nm. The theoretical results match quite well with the experimental values and revealing the suitable conduction band offset Qc=0.6. The temperature dependence of PL spectra is being investigated, in the temperature range between 10 and 300 K.  相似文献   

16.
On the basis of chemical, thermal analysis and Cu K-edge X-ray absorption measurements, oxygen content in the Nd1+xBa2−xCu3Oz solid solution was determined between 1000°C in air and 400°C in oxygen for x=0.05–0.9 compositions. It has been observed that the oxygen nonstoichiometry Δz of the Nd1+xBa2−xCu3O7+x/2−Δz solid solution decreases 2–2.5 times for a large substitution (Δz≈0.3–0.33 for x=0.9), despite of the acclaimed higher total oxygen content. The difference in nonstoichiometry is explained by a higher average value of the copper oxidation state (ACV), which is vital for the solid solution with large x even at elevated temperatures (ACV≈2–2.05 for x>0.3 at 1000°C, PO2=0.21 atm). On the contrary, the ACV after complete oxygenation is almost constant (about 2.25–2.3) for the whole series. The x-dependence of the oxygen content is not monotonous and structural phase transitions can be observed at x=0.3 and x=0.6, as confirmed by the X-ray diffraction and the Raman scattering spectroscopy. The first well-known transition is connected with the oxygen disorder due to the Nd substitution for Ba at random Ba-sites. In the present work, it is proved by the apical oxygen mode broadening in Raman spectra. Ordering of the Nd and Ba atoms with a subsequent orthorhombic distortion of the lattice may occur even at 1000°C in air due to the second transformation at x≈0.6. The invariable orthorhombicity of the Nd-rich solid solution with x>0.6 is not caused by the oxygen absorption as in the x=0.05 case. Existence of high- and low-temperature orthorhombic modifications of this solid solution has been observed for the first time. Finally, a tentative 3D (zxT) diagram is suggested for the Nd1+xBa2−xCu3Oz solid solution up to 1000°C in air, including the new x=0.6–0.9 region.  相似文献   

17.
谷卓  班士良 《物理学报》2014,63(10):107301-107301
对于纤锌矿结构ZnO/MgxZn1-xO有限深单量子阱结构,考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法和自洽法数值求解Schr?dinger方程和Poisson方程,获得电子(空穴)的本征能级和本征波函数.进而,采用费米黄金法则讨论带间光吸收的尺寸效应和三元混晶效应.结果表明:三元混晶材料MgxZn1-xO中Mg组分的增加会增强垒层和阱层的内建电场强度,使得电子(空穴)平均位置靠近左(右)垒,导致带间跃迁吸收峰呈指数减小且发生蓝移;ZnO/MgxZn1-xO量子阱带间跃迁吸收峰随阱宽增大而减小,吸收峰发生红移.所得结果可为改善异质结构材料和器件的光电性能提供理论指导,以期获得实际应用所需的光学吸收频谱和波长.  相似文献   

18.
蔡春锋  吴惠桢  斯剑霄  孙艳  戴宁 《物理学报》2009,58(5):3560-3564
研究了分子束外延技术生长的PbSe/PbSrSe多量子阱结构的中红外光致荧光现象.高分辨率X射线衍射(HRXRD)谱观察到了多量子阱所特有的多级卫星峰,表明量子阱界面陡峭.变温光致荧光谱测量显示量子阱结构对电子空穴有强的限制效应,在相同温度下,量子阱样品的荧光峰峰位相对PbSe体材料有一定的蓝移.发现量子阱样品的荧光强度同温度有关,温度从150 K上升到230 K时,荧光强度逐渐增大,温度继续升高,荧光强度缓慢下降,但在高于室温时,仍能观察到较强的荧光发射,这说明该量子阱结构材料具有应用于室温工作的中红外 关键词: PbSe/PbSrSe多层量子阱(MQWs) 光致中红外荧光 高分辨X射线衍射(HRXRD)  相似文献   

19.
The variations of the high angle 00 peak-shape by means of X-ray l scans of the 00l fundamental reflections were investigated in detail for a highly oriented Bi2Sr2CaCu2Oy (Bi2212) crystal with sufficiently small intrinsic mosaicity and the same crystal annealed in air at 250, 300, 400, 600, and 750°C for 20 h in consequence. For the first time, we observed a new additional reflection almost overlapped original 00l fundamental reflection at annealing temperature below 400°C by X-ray diffraction measurement, which shows that there coexisted two sets of lattice periodicity in the c-direction of the annealed crystal. The new additional reflection appeared at 250°C and disappeared at 400°C. Its intensity was increased at 300°C. The measurements of the AC susceptibility, c-axis parameter and full width at half maximum (FWHM) of the 00 peaks showed that the new additional reflection was associated with the oxygen diffusion in CuO2 planes and the changes of strain field. The results provide the new experimental evidence that the structural distortion is more sensitive to the oxygen diffusion in CuO2 planes than to that in Bi–O layers.  相似文献   

20.
In2S3 layers have been grown by close-spaced evaporation of pre-synthesized In2S3 powder from its constituent elements. The layers were deposited on glass substrates at temperatures in the range, 200–350 °C. The effect of substrate temperature on composition, structure, morphology, electrical and optical properties of the as-grown indium sulfide films has been studied. The synthesized powder exhibited cubic structure with a grain size of 63.92 nm and S/In ratio of 1.01. The films grown at 200 °C were amorphous in nature while its crystallinity increased with the increase of substrate temperature to 300 °C. The films exhibited pure tetragonal β-In2S3 phase at the substrate temperature of 350 °C. The surface morphological analysis revealed that the films grown at 300 °C had an average roughness of 1.43 nm. These films showed a S/In ratio of 0.98 and a lower electrical resistivity of 1.28 × 103 Ω cm. The optical band gap was found to be direct and the layers grown at 300 °C showed a higher optical transmittance of 78% and an energy band gap of 2.49 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号