首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In orthodox quantum mechanics, it has virtually become the custom to identify properties of a physical system with operationally testable propositions about the system. The causes and consequences of this practice are explored mathematically in this paper. Among other things, it is found that such an identification imposes severe constraints on the admissible states of the physical system.  相似文献   

2.
A general mathematical framework called a convex structure is introduced. This framework generalizes the usual concept of a convex set in a real linear space. A metric is constructed on a convex structure and it is shown that mappings which preserve the structure are contractions. Convex structures which are isomomorphic to convex sets are characterized and for such convex structures it is shown that the metric is induced by a norm and that structure preserving mappings can be extended to bounded linear operators.Convex structures are shown to give an axiomatization of the states of a physical system and the metric is physically motivated. We demonstrate how convex structures give a generalizing and unifying formalism for convex set and operational methods in axiomatic quantum mechanics.  相似文献   

3.
4.
5.
Spatial and/or temporal propagation of light waves in periodic optical structures offers a unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based either on spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair production, the Dirac oscillator, the relativistic Kronig–Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.  相似文献   

6.
There exists a coassociative and cocommutative coproduct in the linear space spanned by the two algebraic products of a classical Hamilton algebra (the algebraic structure underlying classical mechanics [1]). The transition from classical to quantum Hamilton algebra (the algebraic structure underlying quantum mechanics) is anħ-deformation which preserves not only the Lie property of the classical Hamilton algebra but also the coassociativity and cocommutativity of the above coproduct. By explicit construction we obtain the algebraic structures of theq-deformed Hamilton algebras which preserve the said properties of the coproduct. Some algorithms of these structures are obtained and their implications discussed. The problem of consistency of time evolution with theq-deformed kinematical structure is discussed. A characteristic distinction between the parametersħ andq is brought out to stress the fact thatq cannot be regarded as a fundamental constant.  相似文献   

7.
Quaternionic quantum mechanics is investigated in the light of the great success of complex quantum mechanics. It is shown that to reproduce the results of complex quantum mechanics, quaternionic quantum mechanics must contain complex quantum mechanics.  相似文献   

8.
We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the system’s total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories.  相似文献   

9.
10.
We first present a realistic framework for quantum probability theory based on the path integral formalism of quantum mechanics and illustrate this framework by constructing a model that describes a quantum particle evolving in a discrete space-time lattice. We then present a finite model for describing the internal dynamics of elementary particles and show that this model gives the standard particle classification scheme and successfully predicts particle masses.  相似文献   

11.
Avinash Khare 《Pramana》1997,49(1):41-64
In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable. In this lecture I review the theoretical formulation of supersymmetric quantum mechanics and discuss many of its applications. I show that the well-known exactly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials and shape invariance. The connection between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Further, it is pointed out that the connection between the solutions of the Dirac equation and the Schrödinger equation is exactly same as between the solutions of the MKdV and the KdV equations.  相似文献   

12.
《Physics letters. A》2006,349(6):411-414
We show explicitly how the causal arrow of time that follows from quantum mechanics has already been inserted at a deeper level by the choice of normalisation conditions. This prohibits information being sent backwards in time but does not determine a time direction for state propagation.  相似文献   

13.
Various formalisms for recasting quantum mechanics in the framework of classical mechanics on phase space are reviewed and compared. Recent results in stochastic quantum mechanics are shown to avoid the difficulties encountered by the earlier approach of Wigner, as well as to avoid the well-known incompatibilities of relativity and ordinary quantum theory. Specific mappings among the various formalisms are given.  相似文献   

14.
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists’ laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr’s quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.  相似文献   

15.
16.
Recently the possibility was raised that time can be regarded as a dynamical variable. This leads to the formulation of discrete mechanics, with the usual continuum mechanics appearing as an approximation. The difference between these two is examined in this paper.  相似文献   

17.
18.
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.  相似文献   

19.
ABSTRACT

An interpretation of quantum mechanics dating back to mid-1950s, based on the ideas of Hugh Everett III, has found a new lease on life in recent decades. Significant efforts have been made by physicists and philosophers of physics to bring advances in physics and philosophy to bear on the interpretation, and to overcome some of the shortcomings in Everett's bold, but limited writings. This article presents an introduction to Everettian quantum mechanics.  相似文献   

20.
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号