首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominant Ti3+ trapped electron center in flux-grown RbTiOPO4 (RTP) crystals has been characterized using electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR). This center is produced during an X-ray irradiation at room temperature when a Ti4+ ion traps an electron and becomes a Ti3+ ion, and is best studied in the 30–40 K range. The EPR spectrum contains a three-line hyperfine pattern from two nearly equivalent neighboring 31P nuclei, along with hyperfine lines from the 47Ti and 49Ti nuclei. The g matrix, determined from the angular dependence of the EPR spectrum, has principal values of 1.819, 1.889, and 1.947. Hyperfine matrices for four 31P nuclei are obtained from the angular dependence of the ENDOR spectrum. The proposed model for this defect is a Ti3+ ion adjacent to an oxygen vacancy at an OT position. Analogies are made to a similar Ti3+ center in KTiOPO4 (KTP) crystals.  相似文献   

2.
Recent progress in the investigation of the electronic structure of the shallow nitrogen (N) and phosphorus (P) donors in 3C–, 4H– and 6H–SiC is reviewed with focus on the applications of magnetic resonance including electron paramagnetic resonance (EPR) and other pulsed methods such as electron spin echo, pulsed electron nuclear double resonance (ENDOR), electron spin-echo envelope modulation and two-dimensional EPR. EPR and ENDOR studies of the 29Si and 13C hyperfine interactions of the shallow N donors and their spin localization in the lattice are discussed. The use of high-frequency EPR in combination with other pulsed magnetic resonance techniques for identification of low-temperature P-related centers in P-doped 3C–, 4H– and 6H–SiC and for determination of the valley–orbit splitting of the shallow N and P donors are presented and discussed.  相似文献   

3.
Paramagnetic centers generated by swift heavy ion irradiation of LiF crystals could be identified as electrons trapped at regular anion vacancy sites (F centers). Well-resolved electron-nuclear double resonance (ENDOR) spectra resulting from the hyperfine interaction with 7Li and 19F nuclei located in six different shells could be recorded. In order to preserve the millimeter-sized crystals, a cavity-free setup was used for the ENDOR experiments at an electronic Larmor frequency of 240 GHz. Apparently even under conditions of extremely high local energy loss in the ion track, the local density of persistent F centers is still sufficiently low to prevent distortions of the ionic crystal. The spread of hyperfine coupling constants was less than 5 %. Neither in electron paramagnetic resonance (EPR) nor in ENDOR spectra there was evidence for different types of paramagnetic centers. When performing ENDOR by applying the radiofrequency pulse directly after the 3-pulse Mims-type microwave sequence, an anomalous ENDOR effect was observed. The observed “positive” and “negative” ENDOR response can be attributed to efficient hole and anti-hole formation in the inhomogeneously broadened EPR spectrum and can be used to determine the sign of hyperfine coupling constants.  相似文献   

4.
Although nearly 100 paramagnetic defects have been catalogued in diamond by spin Hamiltonian parameters measured by electron paramagnetic resonance (EPR), very few of these have been unambiguously associated with an atomic model. It has been necessary to use electron nuclear double resonance (ENDOR) to obtain enough information to make proper assignment of such models. The reason for the limitation of EPR, and the way in which ENDOR overcomes these limitations are discussed. The interpretation of hyperfine structure in terms of unpaired electrons in molecular orbitals, and of quadrupole interactions in terms of all electrons, paired and unpaired, as a source of information about molecular structure in diamond, is evaluated by reference to some well documented examples. The measurements so far made by ENDOR on defects in diamond are reviewed, and the salient contribution for the assignment of a model for each defect is explained. The details revealed by ENDOR considerably increase knowledge about defects, particularly those involving substitutional nitrogen atoms. This in turn helps in understanding the complex electron and atom, migration processes which go on under appropriate conditions of temperature and pressure, or optical excitation. The possibilities are discussed for using ENDOR to increase the number of well characterized centres.  相似文献   

5.
Angle-selection experiments of a spin soliton in randomly oriented ladder polydiacetylene were carried out by pulsed electron paramagnetic resonance (EPR) at W-band. EPR measurement using 94 GHz microwaves increased the difference in the resonance field due tog anisotropy of the spin soliton to allow the orientation dependence of transient nutation, electron nuclear double resonance (ENDOR) and spin relaxations to be investigated. The shape of theg anisotropy-resolved nutation spectrum was discussed on the basis of the EPR transition moments and the differences between spin relaxation times. Reliable assignments of hyperfine couplings to the β protons (Hβ) of the alkyl side chains were achieved with the support of W-band ENDOR measurements. No significant orientational dependence in theT 1 andT 2 processes was found in terms of isotropy of the Hβ-hyperfine interaction.  相似文献   

6.
This paper discusses time-domain electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) experiments aimed at elucidating the enzymatic mechanism of ribonucleotide reductase (RNR), the enzyme responsible for the conversion of ribonucleotides to deoxyribonucleotides. The article begins with a discussion of the current state of the art of instrumentation for high-frequency EPR and ENDOR and some suggestions as to future developments. We then provide an introduction to the chemistry of RNR and a discussion of the high-field EPR and ENDOR spectra of the tyrosyl radical (Y?) in the R2 subunit of class I RNR. Finally, we describe two examples illustrating the use of high-frequency EPR and ENDOR to elucidate the enzymatic mechanism of RNR. EPR and ENDOR have played an important role for these studies since the mechanism involves several different radical intermediates. These intermediates are all present in low concentrations relative to the Y? concentration and they possess similarg-values. Spectral overlap, therefore, has been a problem with X-band EPR. At high frequencies the spectra are resolved to the point that individual powder lineshapes are discernible. In addition, we describe our approach, on the basis of differential relaxation, to suppress the spectrum of the dominant Y?. High-frequency EPR and ENDOR therefore has permitted us to determine the structure of several radical intermediates which in turn have contributed to the understanding of the enzymatic mechanism of RNR.  相似文献   

7.
A novel method that allows the determination of absolute signs of hyperfine coupling constants in polarized radical pair (RP) pulse electron-nuclear double resonance (ENDOR) spectra is presented, The variable mixing time (VMT) ENDOR method used here leads to a separation of ENDOR transitions originating from different electron spin manifolds by employing their dependence on the time-dependent parameters of the pulse sequence. The simple kinetic model of the RP VMT ENDOR experiment shows very good agreement with the experiments performed on the P 700 .+ A 1 .- RP in photosystem I. This method relies on the selective excitation of absorptive or emissive lines of one radical in the RP EPR spectrum and therefore requires high spectral resolution. This condition was fulfilled for the system studied at the low-field edge of the RP EPR spectrum obtained at Q-band. The method presented here has a very high sensitivity and does not require any equipment additional to the one used for RP pulse ENDOR. The VMT ENDOR method offers the possibility for selective suppression of signals from different electron spin manifolds.  相似文献   

8.
13C spin-lattice relaxation times in the laboratory frame, ranging from 1.4 to 36 h, have been measured on a suite of five natural type Ia and Ib diamonds at 4.7 T and 300 K. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Spin-lattice relaxation behavior of 13C in diamonds containing paramagnetic P1, P2, N2. and N3 centers are discussed. Depending on the paramagnetic impurity types and concentrations present in each diamond, three different nuclear spin-lattice relaxation (SLR) paths exist, namely that due to electron SLR mechanisms and two types of three-spin processes (TSPs). The one three-spin process (TSP1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a flip of a 13C spin, while the other process (TSP2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole-dipole interaction reservoirs is field dependent, thus forming a bottleneck in the 13C relaxation path due to TSP1 at high magnetic fields.  相似文献   

9.
10.
Wurtzite type CdS single crystals with tin impurities have been reinvestigated by means of magnetic resonance. The by far strongest neighbour interaction with the rare isotope33S is detectable by electron paramagnetic resonance (EPR), while nine weaker cadmium interactions can be resolved with the electron nuclear double resonance (ENDOR) technique. Three distinct shell symmetries are detected and can be explained by the wurtzite lattice symmetry. The parameters evaluated are interpreted in terms of the LCAO approach. An additional Sn-related spectrum, being not resolvable by ordinary EPR was identified by means of ENDOR-induced-EPR (EI-EPR) and turned out to be associated with Lithium.  相似文献   

11.
A two-dimensional (2D) experiment that correlates electron-nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) frequencies, useful for unraveling and assigning ENDOR and ESEEM spectra from different paramagnetic centers with overlapping EPR spectra, is presented. The pulse sequence employed is similar to the Davies ENDOR experiment with the exception that the two-pulse echo detection is replaced by a stimulated echo detection in order to enhance the resolution in the ESEEM dimension. The two-dimensional data set is acquired by measuring the ENDOR spectrum as a function of the time interval T between the last two microwave pulses of the stimulated echo detection scheme. This produces a series of ENDOR spectra with amplitudes that are modulated with T. Fourier transformation (FT) with respect to T then generates a 2D spectrum with cross peaks connecting spectral lines of the ESEEM and ENDOR spectra that belong to the same paramagnetic center. Projections along the vertical and horizontal axes give the three-pulse FT-ESEEM and ENDOR spectra, respectively. The feasibility of the experiment was tested by simulating 2D ENDOR-ESEEM correlation spectra of a system consisting of an electron spin (S = (1/2)) coupled to two nuclei (I(1) = I(2) = (1/2)), taking into account experimental conditions such as pulse durations and off-resonance irradiation frequencies. The experiment is demonstrated on a single crystal of Cu(2+) doped l-histidine (Cu-His), containing two symmetrically related Cu(2+) sites that at an arbitrary orientation exhibit overlapping ESEEM and ENDOR spectra. While the ESEEM spectrum is relatively simple and arises primarily from one weakly coupled (14)N, the ENDOR spectrum is very crowded due to contributions from two nonequivalent nitrogens, two chlorides, and a relatively large number of protons. The simple ESEEM projection of the 2D ENDOR-ESEEM correlation spectrum is then used to disentangle the ENDOR spectrum and resolve two sets of lines corresponding to the different sites. Copyright 2000 Academic Press.  相似文献   

12.
Electron paramagnetic resonance and electron nuclear double resonance (ENDOR) experiments on ZnO nanoparticles reveal the presence of shallow donors related to interstitial Li and Na atoms. The shallow character of the wave function is evidenced by the multitude of 67Zn ENDOR lines and further by the hyperfine interactions with the 7Li and 23Na nuclei that are much smaller than for atomic lithium and sodium. In the case of the Li-doped nanoparticles, an increase of the hyperfine interaction with the 7Li nucleus and with the 1H nuclei in the Zn(OH)(2) capping layer is observed when reducing the size of the nanoparticles. This effect is caused by the confinement of the shallow-donor 1s-type wave function that has a Bohr radius of about 1.5 nm, i.e., comparable to the dimension of the nanoparticles.  相似文献   

13.
Electron paramagnetic resonance (EPR) spectra of impurity Yb3+ ions (about 0.1 at.%) in mixed crystals BaF2(1-x) plus LaF3(x) have been investigated for different values of the concentrationx at a frequency of about 9.5 GHz by both continuous-wave (CW) EPR and electron spin echo methods. A spectrum of trigonal symmetry with a complex hyperfine structure is observed in “pure” BaF2:Yb3+ (x=0). Upon admixture of small amounts of LaF3 (x=0.001), additional EPR lines arise with intensities increasing with the increase ofx up to 0.005. These lines are attributed to trigonal centers including two rare-earth ions and two compensating fluorine ions. A further increase ofx results in a decrease of the total EPR spectrum intensity, and atx≥0.05 the CW resonance becomes practically unobservable. This may be due to the formation of rare-earth ion clusters with paramagnetic Yb3+ ions occurring in domains with a disordered structure of surroundings resulting in very broad EPR lines, which cannot be registered by CW EPR. Indeed, very broad (not less than 1 KG) EPR lines were observed by the electron spin echo method for concentrationsx<-0.02.  相似文献   

14.
For the analysis of the angular dependence of electron paramagnetic resonance (EPR) spectra of low-symmetry centres with S=1/2 in three independent planes, it is well-established-but often overlooked-that an ambiguity may arise in the best-fit g<--> tensor result. We investigate here whether a corresponding ambiguity also arises when determining the hyperfine coupling (HFC) A<--> tensor for nuclei with I=1/2 from angular dependent electron nuclear double resonance (ENDOR) measurements. It is shown via a perturbation treatment that for each set of M(S) ENDOR branches two best-fit A<--> tensors can be derived, but in general only one unique solution simultaneously fits both. The ambiguity thus only arises when experimental data of only one M(S) multiplet are used in analysis or in certain limiting cases. It is important to realise that the ambiguity occurs in the ENDOR frequencies and therefore the other best-fit result for an ENDOR determined A<--> tensor depends on various details of the ENDOR experiment: the M(S) state of the fitted transitions, the microwave frequency (or static magnetic field) in the ENDOR measurements and the rotation planes in which data have been collected. The results are of particular importance in the identification of radicals based on comparison of theoretical predictions of HFCs with published literature data. A procedure for obtaining the other best-fit result for an ENDOR determined A<--> tensor is outlined.  相似文献   

15.
The local structure of titanium pair centers in SrF2: Ti crystals is investigated using electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy. It is found that titanium pair centers with spin moment S=2 and tetragonal symmetry of the magnetic properties are formed in SrF2: Ti cubic crystals under certain growth conditions and during annealing. The tensor components of the fine and ligand hyperfine structures in the EPR and ENDOR spectra are determined. A model of the Ti+-Ti3+ paramagnetic dimer is proposed. This model provides an adequate interpretation of both the ferromagnetic nature of the exchange interaction and the observed displacements of four ligands in the first coordination sphere of titanium impurity ions in directions perpendicular to the impurity ion-ligand bonds.  相似文献   

16.
17.
A new transient variation of the “Feher-style” electron-nuclear double resonance (ENDOR) method is examined. In this technique, the passage-mode electron paramagnetic resonance (EPR) signal is monitored following the application of a pulsed radio frequency (RF). Continuous-wave and transient proton ENDOR experiments have been conducted on the nonheme iron center from the protein nitrile hydratase. These experiments show that the transient ENDOR signal response exhibits a complex response with multiple phases in the time evolution of the ENDOR signal. Both increases and decreases in the passage-mode EPR signals are observed at different times following the RF pulse that induces an ENDOR transition. A simple model based on a packet-shifting ENDOR mechanism for a nonadiabatic passage EPR signal is proposed. This model describes many of the features seen in the transient ENDOR experiments and provides new insight into the traditional Feher-style ENDOR measurements. This new model shows that a packet-shifting mechanism can account for many of the “negative ENDOR” effects commonly seen in Feher-style ENDOR, which suggests that more exotic ENDOR mechanisms may not be required to explain these observations.  相似文献   

18.
This mini-review focuses on various aspects of the application of radio frequency (rf) irradiation in electron paramagnetic resonance (EPR). The development of the electron-nuclear double resonance (ENDOR) technique is briefly described, and we highlight the use of circularly polarized rf fields and pulse ENDOR methodology in one- and two-dimensional experiments. The capability of pulse ENDOR at Q-band is illustrated with interesting experimental examples. Electron spin echo envelope modulation effects induced by an rf field in liquid samples demonstrate another role which rf fields can play. Technical achievements in the design of ENDOR resonators are illustrated by the example of a bridged loop-gap resonator. Finally, the influence of longitudinal rf fields on the dynamics of EPR transitions is explained using a dressed spin resonance treatment.  相似文献   

19.
ENDOR experiments on coals recorded using continuous wave (CW) and pulsed techniques appear to give qualitatively different spectra. A matrix proton signal dominates the ENDOR spectrum of coals recorded in the CW ENDOR experiment while both a matrix and local proton ENDOR signals with huperfine couplings of up to 20 MHz are observed in spectra recorded using pulsed excitation techniques. Analysis of these spectra lead to different implications for the structure of the molecules that host the unpaired electron. Using a combination of pulsed EPR (Electron Spin Echo, FID detected hole burning) and pulsed Electron Nuclear Multiple Resonance (Sub-level relaxation, hyperfine selective ENDOR, EPR sub-spectra) experiments, we investigate the electron and nuclear spin dynamics in order to reconcile the different signal amplitudes observed in the CW and pulsed ENDOR spectra. In the CW ENDOR experiment, the results of the FID detected hole burning experiments prove that the low ENDOR signal intensity can not be attributed to spectral diffusion mechanisms competing with ENDOR mechanisms. Instead, we find that an unfavorable ratio of the electron and nuclear spin relaxation rates results in small local ENDOR signals. The matrix line dominates the spectrum because of the large number of matrix protons. In the pulsed ENDOR experiment, the hyperfine contrast selectivity mechanism suppresses the intensity of the matrix ENDOR signal and enhances the amplitudes of the local ENDOR signals. In addition, the ENDOR signal is not a function of the ratio of the electron and nuclear relaxation rates.  相似文献   

20.
13C Spin–lattice relaxation (SLR) times in the laboratory frame have been measured at room temperature as a function of field in the range of 500 to 5000 G on two natural type Ib and Ia diamonds after dynamic nuclear polarization. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Three different nuclear SLR paths, namely that due to electron SLR and two types of three spin processes, are discussed. The one three-spin process (TSP) (type 1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a 13C spin while the other process (type 2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole–dipole interaction reservoirs decreases with an increase in field intensity, thus forming a bottleneck in the 13C relaxation path due to the type 1 TSP. The contribution of TSP of type 1 dominates that due to electron SLR and the type 2 TSP in relaxing the 13C nuclei in type Ib diamond from about 1200 to 5000 G, while for type Ia diamond it dominates from 500 up to about 2200 G. In type Ia diamond over the range 2200 to 5000 G it seems that the type 2 TSP, which involves electrons of neighboring P2 hyperfine lines, dominates that of electron spin–lattice and the type 1 TSP. Over the range 500 to about 1200 G, a field-dependent electron SLR mechanism associated with N3 centers appears to dominate the 13C SLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号