首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2018,30(5):852-858
In this study, a novel signal‐amplified strategy for sensitive electrochemical sandwiched immunoassay of carcinoembryonic antigen (CEA) was constructed based on aminofunctionalized graphene oxide (GO‐NH2) supported AgNPs used as catalytic labels of secondary anti‐CEA and β‐galactosidase (β‐Gal), Meanwhile, sulfhydrylation single‐wall carbon nanotubes (SWCNTs‐SH) as substrate materials embellished gold electrode through Au‐SH and connected with gold nanoparticles to form anti‐CEA/AuNPs/SWCNTs‐SH/Au sensing platform through layer‐by‐layer. In the presence of analyte CEA, a sandwich‐type immunoassay format was employed for determination of CEA by using the labeled β‐Gal toward the reduction of p‐aminophenyl galactopyranoside (PAPG) and the redox reaction of AgNPs. Under optimal conditions, the increase in the current was proportional to the concentration of CEA from 0.1 pg/mL to 200 ng/mL. The detection limit (LOD) was 0.036 pg/mL CEA at 3σ. The electrochemical immunoassay displayed an acceptable precision, selectivity, stability. Clinical serum specimens were assayed with the method, and the results were in acceptable agreement with those obtained from the referenced electrochemiluminescent method.  相似文献   

2.
Among the currently used immunoassay techniques, sandwich ELISA exhibits higher specificity, lower cross-reactivity, and a wider working range compared to the corresponding competitive assays. However, it is difficult to obtain a pair of antibodies that can simultaneously bind to two epitopes of a molecule with a molecular weight of less than 1000 Da. Naringin (Nar) is a flavonoid with a molecular mass of 580 Da. The main aim of this study was to develop a sandwich ELISA for detecting Nar. Two hybridomas secreting anti-Nar monoclonal antibodies (mAbs) were produced by fusing splenocytes from a mouse immunised against Nar-bovine serum albumin (BSA) conjugated with a hypoxanthine–aminopterin–thymidine (HAT)-sensitive mouse myeloma cell line; a sandwich ELISA for detecting Nar was developed using these two well-characterised anti-Nar mAbs. The performance of the sandwich assay was further evaluated by limit of detection (LOD), limit of quantification (LOQ), recovery, and interference analyses. A dose-response curve to Nar was obtained with an LOD of 6.78 ng mL−1 and an LOQ of 13.47 ng mL−1. The inter-assay and intra-assay coefficients of variation were 4.32% and 7.48%, respectively. The recovery rate of Nar from concentrated Fructus aurantii granules was 83.63%. A high correlation was obtained between HPLC and sandwich ELISA. These results demonstrate that the sandwich ELISA method has higher specificity for Nar than indirect competitive ELISA.  相似文献   

3.
An immunosensor for the detection of Listeria monocytogenes was developed. ELISA and amperometric studies were run in parallel to develop a more sensitive and rapid assay for the bacterium. Conditions for the immunosensor were primarily characterised using ELISA. A direct sandwich assay was employed and the affinities of two polyclonal (goat and rabbit) and one monoclonal (mouse) anti-L. monocytogenes antibodies were compared using this format. Owing to low sensitivity being obtained with all antibodies, biotin-avidin amplification and an indirect sandwich assay were employed. The system was then transferred to screen-printed electrodes (SPEs), the primary antibody being immobilised by cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, and the mode of detection being amperometric. Various parameters (limit of detection, working range, incubation time, cross-reactivity) of the systems were characterised. The effect of direct incubation in milk is also discussed. The final immunosensor had a working range of 1 x 10(6)-1 x 10(3) cells ml-1 and a detection limit of 9 x 10(2) cells ml-1. The assay took about 3.5 h to complete.  相似文献   

4.
Wu Y  Liu S  He L 《The Analyst》2011,136(12):2558-2563
We present a novel immunosensor by using polymerization-assisted signal amplification strategy coupled with electrochemical detection. A sandwich immunoassay process was used to immobilize a polymerization reaction center, the initiator-conjugated polyclonal prostate specific antigen (PSA) or polyclonal carcinoembryonic antigen (CEA) antibodies on the surface of the electrode. Activator generated electron transfer for atom transfer radical polymerization (AGET ATRP) subsequently triggered the local accumulation of glycidyl methacrylate (GMA) monomers. Growth of long chain polymers provided excess epoxy groups for electrochemical tags aminoferrocene (FcNH(2)) coupling, which in turn significantly increased the loading of the signal molecules and enhanced the electrochemical readouts. The detection limit was ~0.14 pg mL(-1) for PSA and ~0.10 pg mL(-1) for CEA in PBS buffers. The proposed immunosensor was highly sensitive, selective and has a good match to the clinical electrochemiluminescent method. This suggested that the polymerization-assisted immunosensing strategy could be used as an effective method to significantly enhance signal output of the sandwich immunoassays and acted as a promising platform for the clinical screening of cancer biomarkers.  相似文献   

5.
Nanotechnologies are finding a growing range of applications in the food sector. Nanoparticles are used notably to add vitamins and other nutrients to foods and beverages without affecting taste and color. They are also used to develop new tastes, preserve food texture, control the release of flavors, improve the bioavailability of compounds such as antioxidants and vitamins, and monitor freshness with nanosensors. Crosslinked gelatin nanoparticles are a component of nano-sized carriers for nutrient and supplement delivery in foods and related products. This paper describes the production and characterization of polyclonal antibodies against gelatin nanoparticles. Two immunization schemes were investigated: subcutaneous injection with and without a first intravenous injection. Two enzyme-linked immunosorbent assay formats were used to characterize the antibodies: an inhibition format with an antigen-coated plate for detection of the immune response and a sandwich format for development of the method. The antibodies showed good sensitivity with an IC50 equal to 0.11 ng mL(-1) using indirect ELISA format and a good specificity for the nanomaterials, without significant cross-reactivity against native gelatin. The limit of detection was determined-0.42, 0.27, 0.26, and 0.24 μg mL(-1) for apple, orange juice, milk, and soft drink matrices, respectively. ELISA technology offers rapid, low-cost assays for screening foods, feeds, and beverages. We have studied a prototype ELISA for detection of gelatin-based nanocarrier systems. Fruit juices, milk, and a soft drink were the matrices selected for assay development.  相似文献   

6.
Tang J  Tang D  Li Q  Su B  Qiu B  Chen G 《Analytica chimica acta》2011,697(1-2):16-22
A new dual-amplification strategy of electrochemical signal based on the catalytic recycling of the product was developed for the antigen-antibody interaction by glucose oxidase (GOD)- conjugated gold-silver hollow microspheres (AuAgHSs) coupled with an artificial catalase, Prussian blue nanoparticles (PB), on a graphene-based immunosensing platform. The first signal amplification introduced in this study was based on the labeled GOD on the AuAgHSs toward the catalytic oxidation of glucose. The generated H(2)O(2) was catalytically reduced by the immobilized PB on the graphene nanosheets with the second amplification. With a sandwich-type immunoassay format, carcinoembryonic antigen (CEA) was monitored as a model analyte by using the synthesized AuAgHSs as labels in pH 6.0 phosphate buffer containing 10mM glucose. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range of 0.005-50 ng mL(-1) with a low detection limit (LOD) of 1.0 pg mL(-1) CEA (at 3σ). Both the intra- and inter-assay coefficients of variation (CVs) were lower than 10%. The specificity and stability of the immunosensor were acceptable. In addition, the assay was evaluated for clinical serum specimens, and received a good correlation with those obtained by the referenced electrochemiluminescent (ECL).  相似文献   

7.
To detect a biomarker for lung cancer, carcinoembryonic antigen (CEA), a highly sensitive, selective, rapid and portable immunosensor based on immunomagnetic separation and chemiluminescence immunoassay was introduced. A sandwich scheme assay has been utilized with horseradish peroxidase (HRP) labeled anti-CEA antibody and immunomagnetic beads (IMBs). The presence of target protein CEA caused the formation of the sandwich structures (IMBs-CEA-HRP labeled antibody). IMBs were applied to capture CEA and immobilize CEA through the external magnetic field. The HRP at the surface of the antibody catalytically oxidized the luminescence substrate to generate optical signals which were detected by a portable home-made luminometer and which were directly proportional to the concentration of CEA in the samples. The signals were dependent on CEA concentrations in a linear range from 0 to 50 ng mL−1. The limit of detection (LOD) of this method was as low as 5.0 pg mL−1 (S/N = 3). The novel immunosensor was highly sensitive with an assay time of <35 min. The intra- and inter-assay coefficients of variation were <10%. The anti-CEA antibody can be bound to the bead efficiently with a conjugation rate of 73%. IMBs could be stored in 4 °C protecting from light for 2 months without obvious reduction of biological activity. Human reference sera mixed with various concentrations of CEA were tested with the proposed method and commercial enzyme-linked immunosorbent assay (ELISA) kit, and a good linear relationship was obtained. This proposed technique demonstrated an excellent performance for quantifying CEA and was expected to be used for clinical testing.  相似文献   

8.
We report on the use of new biofunctionalized gold nanoparticles (bio-AuNPs) that enable a surface plasmon resonance (SPR) biosensor to detect low levels of carcinoembryonic antigen (CEA) in human blood plasma. Bio-AuNPs consist of gold nanoparticles functionalized both with (1) streptavidin, to provide high affinity for the biotinylated secondary antibody used in the second step of the CEA sandwich assay, and with (2) bovine serum albumin, to minimize the nonspecific interaction of the bio-AuNPs with complex samples (blood plasma). We demonstrate that this approach makes it possible for the SPR biosensor to detect CEA in blood plasma at concentrations as low as 0.1?ng/mL, well below normal physiological levels (approximately nanograms per milliliter). Moreover, the limit of detection achieved using this approach is better by a factor of more than 1,000 than limits of detection reported so far for CEA in blood plasma using SPR biosensors.  相似文献   

9.
In this study, we described a pH ELISA using synthetic melanin nanoparticles (SMNPs) for the co-immobilization of glucose oxidase and second antibody as signal labels, portable pH meter as signal readout device for detecting biomarker of myocardial injury. This assay is easy-to-use, portable, sensitive and able to realize point-of-care testing (POCT), which was demonstrated the signifi cant promising in the early diagnosis and screening of acute myocardial infarction.  相似文献   

10.
In this work, an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-fetoprotein (AFP) was fabricated using Ru(bpy)(3)(2+)-encapsulated liposome as the label and electrodeposited gold nanoparticles (GNPs) as the immobilizing support. Great signal amplification was achieved since liposome could encapsulate large amount of reporter molecules and GNPs could provide large active surface. Under optimized conditions, with sandwich type format, a linear range of AFP from 0.005 to 0.2 pg/mL and an extremely low detection limit of 0.001 pg/mL was obtained, much lower than that in previous reports. The proposed ECL immnuosensor showed high sensitivity, specificity, and good stability, which may open a new door to ultrasensitive detection of proteins in clinical analysis.  相似文献   

11.
This study reports a potentially rapid and convenient immunoassay using antibody-platinum nanoparticle (Ab-PtNPs) conjugates as a reporter molecule and a flatbed scanner for detecting immuno-reaction and measuring of the immuno-reaction signal. This study was based on the sandwich immunoassay (three-layer format) which contained a primary antibody, test antigens and a secondary antibody. The results showed that the silver precipitation phenomenon was catalyzed by Ab-PtNPs conjugates. The changing color of reaction could easily be observed by naked eye or scanner. The silver enhancement reaction, a signal amplification method in which silver ions are reduced to silver metal, is introduced to magnify the detection signal. The relationship between sample concentration and detection signal was discussed. And the detection limit (sandwich assay) for the sample antigen was 10-1 ng/mL. Using a flatbed scanner, Ab-PtNPs conjugates and a silver enhancement reaction, a new immunoassay is constructed.  相似文献   

12.
In this paper the production of antibodies against saxitoxin (STX) is described, as is the optimization and comparison of two competitive ELISA formats (direct and indirect) for the detection of this toxin. Tests were performed in a 96-well microplate using the toxin-specific polyclonal antibodies produced in our laboratory, obtained from rabbits immunized with saxitoxin-keyhole limpet hemocyanin (STX-KLH). In indirect ELISA format saxitoxin, conjugated to bovine serum albumin (STX-BSA) was coated onto the microtitre plate and incubated with standard toxin and anti-STX antibody. A goat anti-rabbit IgG Peroxidase conjugate was used to enable detection. In the direct ELISA format, STX standard, STX conjugate to horseradish peroxidase (STX-HRP), and enzyme substrate/chromogen solution were sequentially added to the microplate after antibody coating.Results showed the saxitoxin detection limit to be 3 and 10 pg mL(-1) for direct and indirect ELISA formats, respectively.The suitability of the assay for quantification of saxitoxin in mussels was also studied. Samples were spiked with saxitoxin before and after sample treatment to study the extraction efficiency and matrix effect, respectively. After treatment, samples were analysed at 1:1000 v/v dilution in PBS to minimize the matrix effect and to detect the regulatory limit of 40-80 micro g saxitoxin per 100 g mussels as stipulated by the Food and Drug Administration. The efficiency of extraction of saxitoxin was from 72 to 102%. These data were confirmed by liquid chromatography coupled with fluorimetric detection, the technique currently used for quantitative determination of toxins in seafood.  相似文献   

13.
Wang C  Wu J  Zong C  Ju H  Yan F 《The Analyst》2011,136(20):4295-4300
A novel trace tag for chemiluminescent (CL) immunoassay was designed by using DNAzyme to functionalize antibody-labeled Au nanoparticles (AuNPs). The trace tag showed an excellent ability to catalyze the oxidation of luminol by hydrogen peroxide, leading to strong CL emission. By coupling the trace tag with a passive mixing accelerated immunoreaction system, a highly sensitive rapid flow-through CL immunoassay method was proposed. Using carcinoembryonic antigen (CEA) as a model analyte, the capture antibody for CEA was immobilized on paramagnetic microspheres, and DNAzyme-anti-CEA antibody functionalized AuNPs were prepared as trace tag. A three-dimensional helical glass tube kept at 37 °C in a water bath was used for passively mixing immunoreagents in a two-step sandwich immunoassay, with which each immunoreaction step could be finished within 150 s. With the help of a magnet, the immunocomplex could conveniently be separated from reactants. Compared with the horseradish peroxidase-based tag, the newly designed trace tag showed obvious signal amplification due to its strong catalytic ability and high loading ratio of DNAzyme on each AuNP. The proposed method showed a linear calibration range from 0.005 to 0.5 ng mL(-1) for CEA detection with a detection limit of 4.1 pg mL(-1) at a signal-to-noise ratio of 3 and acceptable detection reproducibility. The assay results of clinical serum samples were in acceptable agreement with the reference values. The designed immunoassay system with ultrahigh sensitivity provided a programmable and low-cost approach for high-throughput clinical application.  相似文献   

14.
Great challenge remains to continuously improve sensitivity of protein microarrays for broad applications. A copolymer brush is in situ synthesized on both substrate and silica nanoparticle (SNP) surface to efficiently immobilize probe and reporter protein respectively for synergistic amplification of protein microarray signals. As a demonstration, sandwich immunoassay for a cancer biomarker carcinoembryonic antigen (CEA) detection is performed on microarray platform, showing a limit of detection (LOD) of 10 pg/ml and dynamic range of 10 pg/ml to 100 ng/ml. Two orders improvement of LOD is achieved in comparison to the small crosslinker-activated substrate. The improved sensitivity is attributed to not only the high immobilization amount of both probe and reporter but also the favorite protein binding orientations offered by the flexible brushes. This work provides a universal approach to inexpensively and significantly improve protein microarray sensitivity.  相似文献   

15.
In this paper we propose a specific sandwich immunoassay method for human-immunoglobulin G (HIgG). This immunoassay protocol takes advantage of sandwich binding of primary and secondary antibodies for increased specificity. Polystyrene microspheres (PS) serve as immobilizing support, site for sandwich immunoassay and then subsequently used for chemiluminescence (CL) detections. In this sandwich immunoassay, PS microspheres were modified with the primary anti-HIgG (Ab1) via electrostatic interaction, while CdTe nanoparticles (CdTeNPs) were modified with horseradish peroxidase labeled anti-HIgG (Ab2) via covalent binding. Antigen HIgG (Ag) was specifically captured by the first and secondary antibody and form sandwich immunoassay format. Combination of the remarkable sensitivity of CL method and the use of CdTe NPs as anti-HIgG–HRP carrier for the enzymatic signal amplification, provide a linear response range of HIgG from 0.01 to 300 ng mL−1 with an extremely low detection limit of 0.3 pg mL−1. This immunoassay system has many desirable merits including sensitivity, accuracy, and little required instrumentation. The assay results were compared with enzyme-linked immunosorbent assay (ELISA), and showed relatively good reliability. Significantly the new protocol may become quite promising technique for protein immune-detection as well as DNA analysis and other biological analyses.  相似文献   

16.
《Electroanalysis》2017,29(12):2832-2838
In this study, a bimetallic nanomaterial‐based electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF) cancer biomarkers at the same time. CEA and VEGF biomarkers are indicators for colon and breast cancers and stomach cancers, respectively. During the study, gold nanoparticle (AuNp), lead nanoparticle (PbNp), copper nanoparticle (CuNp) and magnetic gamma iron(III)oxide (γFe2O3 Np) were synthesized, characterized and used together for the first time in the structure of an electrochemical biosensor based on anti‐CEA and anti‐VEGF. For this purpose, Au SPE based sandwich immunosensor was fabricated by using labeled anti‐CEA (labeled with Pb+2) and labeled anti‐VEGF (labeled with Cu+2). As a result, CEA and VEGF biomarkers were detected following the oxidation peaks of label metals (Pb+2 and Cu+2) by using differential pulse voltammetry. After the experimental parameters were optimized, the linear range was found in the concentration range between 25 ng/mL and 600 ng/mL with the relative standard deviation (RSD) value of (n=3 for 600 ng/mL) 3.33 % and limit of detection (LOD) value of 4.31 ng/mL for CEA biomarker. On the other hand, the linear range was found in the concentration range between 0.2 ng/mL and 12.5 ng/mL with the RSD value of (n=3 for 12.5 ng/mL) 5.31 % and LOD value of 0.014 ng/mL for VEGF biomarker. Lastly, sample application studies for synthetic plasma sample and interference studies with dopamine, ascorbic acid, BSA, cysteine and IgG were carried out.  相似文献   

17.
《Analytical letters》2012,45(13):2040-2047
Detection of biomarkers in a biologically complex mixture remains a major challenge. Herein, an ultrasensitive colorimetric sandwich sensor for carcino-embryonic antigen (CEA) detection is introduced. The DNAzyme was tethered to biotinylated monoclonal antibodies (McAbs) which serve as the sensing element to recognize the target protein and was then introduced on to the CEA-McAbs assembled micro plate. The CEA was captured in a sandwich assay by the McAbs. The peroxidase-like DNAzyme catalyzed the oxidation of 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), which generated a blue-green colorimetric signal. This method detected CEA in a serum-containing medium at a concentration as low as 10 nM. This strategy is a promising tool for bioanalytical and clinical applications.  相似文献   

18.
A rapid sandwich immunoassay (IA) with enhanced signal response for human fetuin A (HFA) was developed by modifying the surface of a KOH-treated polystyrene microtiter plate (MTP) with agarose and 3-aminopropyltriethoxysilane (APTES). The agarose-APTES complex binds covalently to the hydroxyl moiety of the MTP plate to serve as a binding platform for bioconjugation of EDC-activated anti-HFA antibody (Ab) via carbodiimide coupling. The one-step kinetics-based sandwich enzyme-linked immunosorbent assay (ELISA) enabled the detection of HFA in 30 min with a limit of detection (LOD) and a linear range of 0.02 ng mL−1 and 1–243 ng mL−1, respectively. It detected HFA spiked in diluted human whole blood and serum, and HFA in ethylenediaminetetraacetic acid (EDTA)-plasma of patients with high precision similar to that of conventional ELISA. The anti-HFA Ab-bound agarose-functionalized MTPs retained their functional activity after 6 weeks of storage in 0.1 M PBS, pH 7.4 at 4 °C.  相似文献   

19.
The second generation of a competitive ELISA for prolamin quantification based on the R5 antibody was studied for method performance and suitability to detect partially hydrolyzed prolamins in food. To be able to convert signal intensities to gluten concentrations, as required by the Codex Alimentarius Standard, a new calibrator consisting of a peptic-tryptic digest of wheat, rye, and barley prolamins was used for the first time. LOD and LOQ of the assay were 1.36 and 5.0 mg prolamin/kg food, respectively. Analysis of beer samples and a hydrolyzed wheat product showed that the assay provided significantly higher prolamin concentrations, compared to the sandwich ELISA based on the same antibody, which is only suitable for the detection of intact prolamins. Spiking experiments with defined concentrations of partially hydrolyzed prolamins gave recoveries ranging from 92 to 136%.  相似文献   

20.
Pucci V  Mandrioli R  Raggi MA 《Electrophoresis》2003,24(12-13):2076-2083
A rapid capillary zone electrophoresis method with indirect UV detection was developed and validated for the determination of valproic acid (VPA) in human plasma. The analyses were carried out under optimized conditions, using a buffer system composed of 15 mM benzoate and 0.5 mM cetyltrimethylammonium bromide at pH 6.0, and 25% v/v methanol; 2-hydroxybutyric acid was selected as the internal standard (IS). The capillary electrophoresis (CE) separation was carried out at a negative potential of 30 kV and the indirect UV detection was operated at 210 +/- 20 nm for all assays. The influence of buffer pH, ionic strength, concentration of electroosmotic flow (EOF) modifier and organic modifier on indirect signal response and migration behavior of the organic acid was investigated. Isolation of VPA from plasma was accomplished by a carefully implemented procedure using methanol as the precipitant agent. Using a high ratio of methanol to plasma for deproteinization (4:1), good absolute recovery of the analyte and satisfactory selectivity was obtained. The calibration line for VPA was linear over the 1-100 microg/mL concentration range. Sensitivity was high; in fact, the limit of detection (LOD) of VPA was 150 ng/mL and 450 ng/mL the limit of quantitation (LOQ). The results obtained analyzing real plasma samples from schizophrenic patients under polytherapy with VPA as well as antipsychotic drugs were satisfactory in terms of precision, accuracy and sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号