首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The calcium silicate hydrate (C-S-H) phase resulting from hydration of a white Portland cement (wPc) in water and in a 0.3 M NaAlO(2) solution has been investigated at 14 and 11 hydration times, respectively, ranging from 6 h to 1 year by (27)Al and (29)Si MAS NMR spectroscopy. (27)Al MAS NMR spectra recorded at 7.05, 9.39, 14.09, and 21.15 T have allowed a determination of the (27)Al isotropic chemical shift (delta(iso)) and quadrupolar product parameter (P(Q) = C(Q)) for tetrahedrally coordinated Al incorporated in the C-S-H phase and for a pentacoordinated Al site. The latter site may originate from Al(3+) substituting for Ca(2+) ions situated in the interlayers of the C-S-H structure. The spectral region for octahedrally coordinated Al displays resonances from ettringite, monosulfate, and a third aluminate hydrate phase (delta(iso) = 5.0 ppm and P(Q) = 1.20 MHz). The latter phase is tentatively ascribed to a less-crystalline aluminate gel or calcium aluminate hydrate. The tetrahedral Al incorporated in the C-S-H phase has been quantitatively determined from (27)Al MAS spectra at 14.09 T and indirectly observed quantitatively in (29)Si MAS NMR spectra by the Q(2)(1Al) resonance at -81.0 ppm. A linear correlation is observed between the (29)Si MAS NMR intensity for the Q(2)(1Al) resonance and the quantity of Al incorporated in the C-S-H phase from (27)Al MAS NMR for the different samples of hydrated wPc. This correlation supports the assignment of the resonance at delta(iso)((29)Si) = -81.0 ppm to a Q(2)(1Al) site in the C-S-H phase and the assignment of the (27)Al resonance at delta(iso)((27)Al) = 74.6 ppm, characterized by P(Q)((27)Al) = 4.5 MHz, to tetrahedrally coordinated Al in the C-S-H. Finally, it is shown that hydration of wPc in a NaAlO(2) solution results in a C-S-H phase with a longer mean chain length of SiO(4) tetrahedra and an increased quantity of Al incorporated in the chain structure as compared to the C-S-H phase resulting from hydration of wPc in water.  相似文献   

2.
Spectroscopic studies (1H, 23Na and 27Al MAS NMR and Raman spectroscopy) have been used to characterize three series of C-S-H samples (0.8<Ca/Si<1.7): one C-S-H series, one aluminum inserted C-S-H series (named C-A-S-H series), and one sodium and aluminum inserted C-S-H series (named C-N-A-S-H series). Previous Rietveld analyses have been performed on the two first series and have clearly shown that (1) a unique ‘tobermorite M defect’ structural model allows to describe the C-S-H structure whatever the Ca/Si ratio and (2) the insertion of aluminum into the C-S-H structure led to the degradation of the crystallinity and to a systematic increase of the basal spacing of about 2 Å regardless the Ca/(Si+Al) ratio (at a constant Al/Si ratio of 0.1). Spectroscopic investigations indicate that the main part of the Al atoms is readily incorporated into the interlayer region of the C-S-H structure. Al atoms are mainly inserted as four-fold coordinated aluminates in the dreierketten silicate chain (either in bridging or paired tetrahedra) at low Ca/Si ratio. Four-fold aluminates are progressively replaced by six-fold coordinated aluminates located into the interlayer region of the C-S-H structure and bonded to silicate chains. Investigation of the hydrogen bonding in C-S-H indicates that the main part of the hydrogen bonds is intra-main layer, and thus explains the low stacking cohesion of the C-S-H structure leading to its nanometric crystal size and the OD character of the tobermorite like structures.  相似文献   

3.
Some silica-based solids, prepared by the sol/gel method in the presence of high Mn2+ concentrations, have been characterized by the 29Si, 27Al MAS NMR spectra and 29Si T1 measurements. The single-pulse 29Si and 27Al MAS NMR spectra have shown broad spinning sideband patterns that are interpreted in terms of anisotropic bulky magnetic susceptibility (BMS) and dipole-field effects. In the absence of paramagnetic isotropic shifts, the 29Si and 27Al nuclei observed in the single-pulse NMR spectra have been assigned to nuclei remote from paramagnetic centers. It has been demonstrated that the 29Si and 27Al nuclei, which are in the vicinity of the manganese ions, can be detected by the Hahn-echo MAS NMR experiments at different carrier frequencies.  相似文献   

4.
HZSM-5分子筛焙烧脱铝的27Al MQMAS NMR研究   总被引:1,自引:0,他引:1  
用29Si、27Al魔角旋转固体核磁共振(MAS NMR)结合二维多量子魔角旋转(2D MQMAS)技术对焙烧脱铝的HZSM-5分子筛中铝的配位状态进行了研究.结果表明,HZSM-5分子筛经焙烧后,在化学位移(δ)45处出现一宽峰信号,其主要来自扭曲四配位铝.通过二维三量子铝谱计算出扭曲四配位铝的四极作用常数约为5.2 MHz.对700和750 ℃焙烧样品的铝谱进行分峰拟合,发现在δ 30处又出现一个小峰,归属为非骨架五配位铝.同时,在750 ℃焙烧样品的二维多量子铝谱中直接观察到非骨架五配位铝的信号.焙烧温度低于700 ℃,脱铝不明显;高于700 ℃,引起分子筛骨架的显著脱铝.焙烧还造成部分骨架铝的信号变得“不可观测”.  相似文献   

5.
The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH approximately 13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10(-3), 10(-4), and 10(-5) molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10(-5) m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10(-3) m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative nature of the 27Al NMR data shows that cancrinite growth increases while sodalite reaches a steady state with respect to total aluminum in the solid phases. The data also relate the coupling of Cs sorption to the ripening of feldspathoid phases in this heterogeneous system as a function of time, and illustrate the important influence of co-contaminants on the environmental reaction kinetics studied here.  相似文献   

6.
A series of aluminum-containing kanemite (Al-kanemite) samples with several Si/Al molar ratios were synthesized. The Al-kanemite samples were pillared with silica. X-ray diffractograms showed that the layered structure of the Al-kanemite samples was maintained at Si/Al= infinity approximately 10 but was broken at Si/Al = 5, 2.5, and 1. 29Si MAS NMR spectra of the Al-kanemite samples, except for that of Si/Al = 1, mainly showed peaks of Q(3) sites, which were attributed to Si(OSi)(3)(OH) groups, although peaks assigned to Si(OAl)(OSi)(2)(OH) were also seen. The 27Al MAS NMR spectra indicated that the Al-kanemite samples had only four-coordinate aluminum atoms. The FTIR spectra of pyridine adsorbed on the pillared Al-kanemite derivatives revealed Lewis acid sites on the surface. The nitrogen adsorption isotherms of the derivatives were classified as type I (Langmuir) absorption isotherms. Using the alpha(s) method, the specific surface areas of the derivatives were 572-756 m(2)g(-1), and the pore sizes were calculated as 1.25-1.83 nm. The pillared Al-kanemite derivatives had slit-shaped micropore structures.  相似文献   

7.
29Si and 27Al MAS NMR spectra of mullites from different kaolinites   总被引:2,自引:0,他引:2  
Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica.  相似文献   

8.
A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.  相似文献   

9.
丝光沸石水蒸气/酸浸渍脱铝的多核固体核磁共振研究   总被引:1,自引:0,他引:1  
采用1H,29Si,27Al魔角旋转固体核磁共振(MASNMR)及1H-29Si交叉极化(CP)技术研究丝光沸石水蒸气/酸浸渍脱铝过程中各种铝物质的结构与性质.结果表明,丝光沸石上骨架铝原子在水分子作用下,生成非骨架四配位铝物质[Al(OH)3(H2O)],分别在27Al谱δ45和1H谱δ3.0处出现共振信号,这种铝物质不同于扭曲四配位铝,在高温下进一步水合生成Al(OH)3(H2O)2和Al(OH)3(H2O)3,即非骨架五配位和六配位铝物质.1H-29SiCP和1H谱证实,水蒸气脱铝使丝光沸石产生了大量的硅羟基和铝羟基.  相似文献   

10.
11.
A general strategy of structural analysis of alumina silicate by combining various solid‐state NMR measurements such as single pulse, multi‐quantum magic angle spinning, double‐quantum homo‐nuclear correlation under magic angle spinning (DQ‐MAS), and cross‐polarization hetero‐nuclear correlation (CP‐HETCOR) was evaluated with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency) by using anorthite as a model material. The high magnetic field greatly enhanced resolution of 27Al in single pulse, DQ‐MAS, and even in triple‐quantum magic angle spinning NMR spectra. The spatial proximities through dipolar couplings were probed by the DQ‐MAS methods for homo‐nuclear correlations between both 27Al–27Al and 29Si–29Si and by CP‐HETCOR for hetero‐nuclear correlations between 27Al–29Si in the anorthite framework. By combining various NMR methodologies, we elucidated detailed spatial correlations among various aluminum and silicon species in anorthite that was hard to be determined using conventional analytical methods at low magnetic field. Moreover, the presented approach is applicable to analyze other alumina‐silicate minerals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
用~(29)Si(~(27)Al)MAS NMR和辅加乙酰丙酮(acac)处理样品的静态~(27)Al NMR研究了镧离子对脱铝Y型沸石(DAIY)骨架硅、铝和非骨架铝(EFAL)的影响.结果表明,~(29)Si MAS谱的化学位移及其形状不仅取决于连接[SiO_4]四面体的[AlO]-四面体数目,而且还与引入镧离子的量有关.镧离子的引入导致~(27)Al MAS谱的明显宽化和不对称形变.另外,还讨论了镧离子对非骨架铝的影响.  相似文献   

13.
Various boron only ([B]-BEA) as well as aluminum- and boron-containing beta zeolites ([Al,B]-BEA) have been prepared and modified by ion exchange of ammonium, sodium, and nickel ions. The zeolite samples have been characterized by 11B, 27Al, and 29Si MAS as well as three of them by 11B and 27Al 3Q-MAS NMR spectroscopy. The quantitative contributions of defect-free Si(nX) (n = 2, 1, 0; X = Al, B) and Si(OH)x (x = 2, 1) sites to the NMR signal intensities were calculated from the various Si/(Al + B) ratios and relative 11B, 27Al, and 29Si NMR signal intensities using the special distribution of aluminum and boron in different periodical building units of the zeolite framework. The boron atoms are sitting exclusively in diagonal positions in the four-membered rings of [B]-BEA zeolites, while the aluminum atoms are situated both in diagonal and lone positions in the four-membered rings of [Al,B]-BEA zeolites. A higher part of boron atoms are positioned in framework-related deformed tetrahedral boron species than in lattice positions in the [B]-BEA than in the [Al,B]-BEA zeolites. All extraframework octahedral aluminum species are transformed back to lattice positions due to ion exchange from the protonated form to ammonium-, sodium-, or nickel-ions containing zeolites. Oppositely, trigonal boron leaves the zeolite structure completely during ion exchange.  相似文献   

14.
15.
用高分辨~(29)Si、~(27)Al和~(23)Na NMR对直接法合成的不同硅铝比ZSM-5型分子筛局域结构作了表征,用~(29)Si和~(27)Al魔角旋转核磁共振研究了经不同温度水蒸气处理ZSM-5型分子筛的骨架脱铝,对不同条件下ZSM-5型分子筛中发生的正交-单斜晶型变化进行了系统的X射线衍射实验研究。  相似文献   

16.
Spectroscopic characterization of natural calcite minerals   总被引:1,自引:0,他引:1  
The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm(-1). The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a=4.9781 A, c=17.1188 A. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.  相似文献   

17.
Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of 27Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X‐ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded 27Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well‐defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X‐ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with 29Si MAS NMR spectra. Factor analysis of 27Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of 27Al MAS NMR spectra is significantly shorter than that of 29Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
焙烧对HZSM-5分子筛结构的影响   总被引:3,自引:0,他引:3  
运用魔角自转固态核磁共振谱(MAS-NMR),研究了焙烧对HZSM-5分子筛结构的影响.结果表明,高温焙烧将引起HZSM-5分子筛骨架的脱铝,当焙烧温度从500℃增加到700℃时,HZSM-5的骨架Si/Al比由16.7增加至22.7;而当焙烧温度由700℃到800℃时,骨架Si/Al比则由22.7增加到了48.5.27Al-MASNMR结果表明,从骨架上脱下来的铝,部分地形成了NMR不可见的无定形态.随着焙烧温度的升高,NMR不可见铝增多  相似文献   

19.
By using a high-resolution solid state nuclear magnetic resonance spectrometer with 27Al and 29Si probes, the interaction between Mo species and HZSM-5 of frsol|Mo/HZSM-5 catalysts has been studied. The results show that there is a strong interaction between Mo species and HZSM-5 zeolite. The framework aluminum in the zeolite can be easily extracted by the introduction of Mo species. The extractability of framework aluminum by Mo species increases with increasing Mo loading and the calcination temperature. The extraction process leads to the formation of non-framework Al at first and then a new crystalline phase of Al2(MoO4)3. The dealumination of the catalyst having a Mo loading of 15% and had been calcined at 973 K is so severe that all the aluminum in the framework are extracted and no framework Al could be detected by 27Al MAS NMR. The catalyst, therefore, lost its catalytic activity for methane dehydrogenation and aromatization in the absence of oxygen. The Si/Al ratio measured from 29Si MAS NMR further confirms the dealumination process observed by 27Al MAS NMR. The MAS NMR results give us an evidence that Al2(MoO4)3 crystallites are much less active for the reaction.  相似文献   

20.
A combination of 27Al magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, 13C-1H CPMAS, and 13C-{27Al} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum isopropoxide, and aluminum tertiarybutoxide. Aluminum alkoxides exist as oligomers with aluminum in different coordinations. High-resolution 27Al MAS NMR experiments with high-spinning speed distinguished the aluminum atoms in different environments. The 27Al MAS NMR spectrum gave well-resolved powder patterns with different coordinations. Z-filter MQ-MAS was performed to obtain the number and types of aluminum environments in the oligomeric structure. 13C-1H CPMAS chemical shifts resolved the different carbon species (-CH3, =CH2, =CH-, and =C=) in the structures. 13C-{27Al} TRAPDOR experiments were employed to obtain relative Al-C dipolar interactions and to distinguish between terminal and bridging alkoxides in the crystallographic structures. The complete characterization of selected aluminum alkoxides using advanced NMR methods has evidenced the tetrameric structure for aluminum isopropoxide and the dimeric structure for aluminum tertiary-butoxide, as reported in the literature, and proposed a polymeric structure for aluminum ethoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号