首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NiCo2S4 microspheres consisting of nanoparticles were synthesized by a simple hydrothermal process, and then NiCo2S4@CeO2 microspheres consisting of nanosheets or nanoneedles-like structures were constructed by a morphology reshaping process for the first time. The introduction of CeO2 changes the nanoparticle morphology of NiCo2S4, and forms incompact nanosheet and nanoneedle structures. The porous, incompact nanosheet or nanoneedle structures with enhanced specific surface areas not only accelerate the charge transfer but also facilitate the electrolyte diffusion and provide more active sites for the redox reactions. These merits endow outstanding electrochemical performances to NiCo2S4@CeO2 microspheres when used as electrode materials for electrochemical pseudocapacitor. Especially, NiCo2S4@CeO2 (6 wt%) microspheres consisted of nanosheets show a high specific capacitance of 1263.6 F g?1 with a retention rate of 81.1% at 20 A g?1 after 10,000 cycles. Nonetheless, pristine NiCo2S4 microspheres consisted of nanoparticles only show a high specific capacitance of 555.2 F g?1 with a retention rate of 63.5% at the same conditions. The first-principles calculation shows that the strong interactions between the NiCo2S4 and CeO2 are favorable for the stabilization of the composite, being responsible for its good cycling performance. The result shows that the NiCo2S4@CeO2 microspheres are promising electrode materials for high-performance pseudocapacitor, and morphology reshaping and CeO2 modification are efficient ways to construct high-performance pseudocapacitor.  相似文献   

2.
The design of electrode materials with rational core/shell structures is promising for improving the electrochemical properties of supercapacitors. Hence, hierarchical FeCo2S4@FeNi2S4 core/shell nanostructures on Ni foam were fabricated by a simple hydrothermal method. Owing to their structure and synergistic effect, they deliver an excellent specific capacitance of 2393 F g−1 at 1 A g−1 and long cycle lifespan as positive electrode materials. An asymmetric supercapacitor device with FeCo2S4@FeNi2S4 as positive electrode and graphene as negative electrode exhibited a specific capacitance of 133.2 F g−1 at 1 A g−1 and a high energy density of 47.37 W h kg−1 at a power density of 800 W kg−1. Moreover, the device showed remarkable cycling stability with 87.0 % specific-capacitance retention after 5000 cycles at 2 A g−1. These results demonstrate that the hierarchical FeCo2S4@FeNi2S4 core/shell structures have great potential in the field of electrochemical energy storage.  相似文献   

3.
采用离子刻蚀和化学气相沉积法制备出具有沸石咪唑酯骨架(ZIFs)型双壳层纳米笼状的CoS/NiCo_2S_4并组装成超级电容器。该结构有较大的比表面积(98 m2·g-1),合适的孔道(孔径4 nm),且保留了ZIFs骨架构型。作为电极活性材料时,具有良好的结构稳定性和电化学活性,有利于增强所组装的超级电容器的循环稳定性和比容量。在三电极体系中,在1 A·g-1的电流密度下,容量为1 230 F·g-1;在3 A·g-1电流密度下循环9 000圈后,初始电容保持率为76.6%。在以该电极、活性炭电极与KOH/聚乙烯醇(PVA)凝胶态电解质组装的器件中,当功率密度为702 W·kg-1时,能量密度达31.6 Wh·kg-1;在7 056 W·kg-1的高功率密度下,仍保持16.5 Wh·kg-1的能量密度。  相似文献   

4.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

5.
Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm?2 at 4 mA cm?2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm?2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg?1 at 674 W kg?1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm?2. These superior properties hold great promise for energy‐storage applications.  相似文献   

6.
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3O4 and Co3S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3O4@Co3S4 nanocomposite, the nanostructure of Co3S4 was fabricated from Co3O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm−2 (5651.24 F g−1) at a current density of 6 mA cm−2 compared to the Co3O4/rGO/NF electrode with a capacitance of 3.06 F cm−2 (1230.77 F g−1) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg−1, specific power density of 6048.03 W kg−1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s−1). Finally, by using Co3O4 @Co3S4/rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm−2 at the applied current density of 1 mA cm−2, and delivered an energy density of 0.143 Wh kg−1 at the power density of 5.42 W kg−1.  相似文献   

7.
Energy density, rate-capability and cycling stability performance of asymmetric supercapacitors (ASCs) can be improved by engineering the rational design of both cathode and anode electrodes materials-based on hierarchical structures. The fabrication of metal-organic-frameworks (MOFs)-derived hierarchical core@shell nanosheet arrays is undoubtedly a crucial task; however, their development is important to promote efficient asymmetric supercapacitor devices. Herein, we are reporting MOF-derived (Mn-1)CoxSy nanosheet arrays enfolded with unique marigold flower-like nanoreservoirs of (Ni–Cu)OHs as a novel core@shell-based cathode material for asymmetric supercapacitor. In the presence of the highly conductive, porous and uniquely structured (Ni–Cu)OHs shell material, the multicomponent (Mn-1)CoxSy@(Ni–Cu)OHs core@shell nanosheet arrays deliver an ultra-high areal capacity of 2.19 mA h cm?2 at 1 mA cm?2. Newly developed (Mn–Fe10)Sx@GF hybrid film with enriched redox contributions is used as an anode material to configure the ASC device. The (Mn-1)CoxSy@(Ni–Cu)OHs//(Mn–Fe10)Sx@GF ASC device delivers an ultra-high energy density performance of 95.25 W h/kg at a power density of 963.2 W k/g with capacity retention of 92.08% after 10,000 cycles. Thus, the successful syntheses of multicomponent-based (Mn-1)CoxSy@(Ni–Cu)OHs core@shell as cathode and (Mn–Fe10)Sx@GF as anode electrode materials with excellent electrochemical outcomes have given new directions to develop ultra-high performance asymmetric supercapacitors.  相似文献   

8.
以浮动催化化学气相沉积致密超薄碳纳米管薄膜(CNTF)为基体,通过两步酸处理使薄膜内制备的碳纳米管(CNT)分开并赋予其活性官能团,CNTF由超疏水转变为超亲水性,然后在CNT表面生长均匀的前驱体包覆层,离子进入超亲水薄膜内部确保了高负载量,最后进行液相硫化制得NiCo_2S_4@碳纳米管构筑柔性薄膜(NiCo_2S_4@CNTF)电极。利用扫描电子显微镜、X射线衍射等对产物进行了表征,证明优化产物为NiCo_2S_4均匀包覆多壁CNT构筑而成的三维网状柔性复合薄膜,单根CNT的表面是NiCo_2S_4纳米粒子构成、厚度约70 nm的粗糙包覆层。该复合薄膜比电容达到270.3 mF·cm-2,即使在高电流密度2.5 mA·cm-2下充放电循环10 000次后仍保持很好的可逆性,电容保持率达93%,库伦效率持续稳定在92%附近;重复大变形(弯曲、折叠、卷曲)后能保持结构完整性和性能稳定性。同时,探讨了电化学性能与结构间的关系,并揭示了性能增强的内在机理。  相似文献   

9.
A promising nickel cobaltite oxide (NiCo2O4) composite electrode material was successfully synthesized by a sol-gel method and followed by a simple sintering process. The microstructure and surface morphology of NiCo2O4 modified by hexadecyltrimethylammonium bromide (CTAB) and polyvinyl alcohol were physically characterized by powder X-ray diffraction and scanning electron microscopy. Meanwhile, electrochemical performance was widely investigated in 2 M KOH aqueous electrolyte using cyclic voltammetry, galvanostatic charge-discharge test, and electrochemical impedance spectroscopy. The results show that evident porous microstructure was successfully fabricated by CTAB. The NiCo2O4 controlled by CTAB exhibited highly specific capacitance of 1,440 F?g?1 at a current density of 5 mA?cm?2. Remarkably, it still displays desirable cycle retention of 94.1 % over 1,000 cycle numbers at a current density of 20 mA?cm?2. The excellent electrochemical performance suggests its potential application in electrode material for electrochemical capacitors.  相似文献   

10.
The production of hydrogen and oxygen via water electrolysis has become a sustainable and encouraging pathway for the establishment of new energy sources. Herein, we report the successful growth of hierarchical NiCo2O4‐carbon dots (CDs) nanoneedle arrays supported on nickel foam through a simple and environmentally benign hydrothermal self‐assembly technique. The designed material acts as a binder free electrode and shows bifunctional electrocatalytic activity for both hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER) in alkaline medium. An electrocatalyst sample with an optimal loading of CDs (25 mg) requires a low overpotential of 146 mV to achieve a current density of 10 mA/cm2 for the HER in an alkaline medium, whereas it requires an overpotential of 390 mV to achieve a current density of 50 mA/cm2 for the OER in the same alkaline medium. The excellent electrocatalytic activities of the sample with loading of CD can be ascribed due to the presence of large number of exposed active sites offered by CD/NiCo2O4 and the enhanced electron transfer processes occurring as a result of hierarchical structure composed of three‐dimensional nickel foam and the NiCo2O4?CDs nanoneedle arrays. Thus, the synthesis method introduced in this present work is a facile and cost‐effective approach for the construction of bifunctional electrocatalysts with high reactivity and excellent durability.  相似文献   

11.
An integrated electrode consisting of hybrid nanonet/nanoflake NiCo2O4 grown on stainless steel mesh substrates exhibits a high specific capacitance while maintaining high-rate capability and good cycling stability. The specific capacitance reaches a maximum of 911 F g?1 at a current density of 10 A g?1, which can still retain 864 F g?1 (94.8 % retention) after 10,000 cycles. These much-improved electrochemical performances are attributed to the unique architecture of NiCo2O4 electrode. The interconnected nanonet NiCo2O4 with an ultrahigh surface area significantly facilitates the rapid ion/electron transport and guarantees good mechanical adhesion, while the ultrathin nanoflakes further extend the active sites for fast redox reactions for efficient energy storage. Figure
Hybrid nanonet/nanoflake NiCo2O4 grown on stainless steel mesh exhibits superior capacitive performance and long-life stability as an integrated electrode for high-performance supercapacitors.  相似文献   

12.
Increasing energy demands and worsening environmental issues have stimulated intense research on alternative energy storage and conversion systems including supercapacitors and fuel cells. Here, a rationally designed hierarchical structure of ZnCo2O4@NiCo2O4 core–sheath nanowires synthesized through facile electrospinning combined with a simple co‐precipitation method is proposed. The obtained core–sheath nanostructures consisting of mesoporous ZnCo2O4 nanowires as the core and uniformly distributed ultrathin NiCo2O4 nanosheets as the sheath, exhibit excellent electrochemical activity as bifunctional materials for supercapacitor electrodes and oxygen reduction reaction (ORR) catalysts. Compared with the single component of either ZnCo2O4 nanowires or NiCo2O4 nanosheets, the hierarchical ZnCo2O4@NiCo2O4 core–sheath nanowires demonstrate higher specific capacitance of 1476 F g?1 (1 A g?1) and better rate capability of 942 F g?1 (20 A g?1), while maintaining 98.9 % capacity after 2000 cycles at 10 A g?1. Meanwhile, the ZnCo2O4@NiCo2O4 core–sheath nanowires reveal comparable catalytic activity but superior stability and methanol tolerance over Pt/C as ORR catalyst. The impressive performance may originate from the unique hierarchical core–sheath structures that greatly facilitate enhanced reactivity, and faster ion and electron transfer.  相似文献   

13.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

14.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO_2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO_2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO_2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g~(-1)的电流密度下,比电容提高至1 297 F·g~(-1);2 A·g~(-1)下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO_2的结构稳定性。  相似文献   

15.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g-1的电流密度下,比电容提高至1 297 F·g-1;2 A·g-1下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO2的结构稳定性。  相似文献   

16.
Novel, porous NiCo2O4 nanotubes (NCO‐NTs) are prepared by a single‐spinneret electrospinning technique followed by calcination in air. The obtained NCO‐NTs display a one‐dimensional architecture with a porous structure and hollow interiors. The effect of precursor concentration on the morphologies of the products is investigated. Due to their unique structure, the prepared NCO‐NT electrode exhibits a high specific capacitance (1647 F g?1 at 1 A g?1), excellent rate capability (77.3 % capacity retention at 25 A g?1), and outstanding cycling stability (6.4 % loss after 3000 cycles), which indicates it has great potential for high‐performance electrochemical capacitors. The desirable enhanced capacitive performance of NCO‐NTs can be attributed to the relatively large specific surface area of these porous and hollow one‐dimensional nanostructures.  相似文献   

17.
Two kinds of electrode materials Ni(OH)2 and Ni(OH)2@Zn(OH)2 composite are fabricated on nickel foam. Electrochemical experiments indicate Ni(OH)2@Zn(OH)2 composite deserves further study due to high specific capacitance and good cycle stability, so that it can achieve energy storage and conversion as much as possible. When the hydrothermal time is different, the electrochemical performance of the sample is also different. Accurately, samples can obtain better electrochemical performance at 15 h, and the maximum specific capacitance of Ni(OH)2@Zn(OH)2 is 7.87 F cm?2 compared to Ni(OH)2 (0.61 F cm?2) at 5 mA cm?2. Even at 50 mA cm?2, specific capacitance is 5.24 F cm?2 and rate capability is 66.6%. Furthermore, Ni(OH)2@Zn(OH)2-15 h loses 19.8% after 1000 cycles, revealing the composite has an outstanding stable cycle. These properties also indicate Ni(OH)2@Zn(OH)2-15 h is a promising electrode material.  相似文献   

18.
Developing environmentally friendly and highly active water splitting catalysts would be of great significance for clean energy conversion and utilization processes. Heterogeneous CuCo2S4@Ni(OH)2 nanorod arrays with abundant oxygen vacancy firstly have been designed through a controllable hydrothermal and electrodeposition method. The synergies and open structures of the particular hierarchical structure together with the abundant oxygen vacancies offer more surface reactive centers, which can promote the electron transfer rate and reduce the activation energy of intermediate species. The CuCo2S4@Ni(OH)2–20 min nanorod arrays are considered as an excellent and robust electrocatalyst for the proton reduction under an alkaline condition with an extraordinary low overpotential of 117 mV at 10 mA cm?2. The CuCo2S4@Ni(OH)2–20 min heterostructures electrode is also stable and robust for the water oxidation reaction, needing an overpotential of only 250 mV to obtain 100 mA cm?2. Therefore, an alkaline electrolyzer was designed using CuCo2S4@Ni(OH)2–20 min nanorod arrays as bifunctional electrocatalyst, which can complete overall water splitting at a cell voltage of 1.47 V with 10 mA cm?2, suggesting a promising combination of the same material for efficient overall water splitting device. The cell voltage of 1.47 V, to our knowledge, is among the lowest values of the published support catalysts for electrocatalytic water splitting up to now.  相似文献   

19.
《中国化学快报》2022,33(9):4367-4374
Rational design and building of high efficiency, secure and inexpensive electrocatalyst is a pressing demand and performance to promote sustainable improvement of hydrogen energy. The bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution response (HER) with high catalytic performance and steadiness in the equal electrolyte are extra treasured and meaningful. Herein, a unique three-dimensional (3D) structure electrocatalyst for NiCo2S4 growing on the flower-like NiFeP was designed and synthesized in this study. The results show that the flower-like NiCo2S4/NiFeP/NF composite electrocatalyst has large specific surface area, appropriate electrical conductivity, and greater lively websites uncovered in the three-dimensional structure, and affords extraordinary electrocatalytic overall performance for the ordinary water splitting. In alkaline solution, the OER and HER overpotentials of NiCo2S4/NiFeP/NF only need 293 mV and 205 mV overpotential to provide the current densities of 100 mA/cm2 and 50 mA/cm2, respectively. This high electrocatalytic activity exceeds the catalytic activity of most nickel-iron based electrocatalysts for OER and HER process. Accordingly, the optimized NiCo2S4/NiFeP/NF sample has higher stability (24 h) at 1.560 and 10 mA/cm2, which extensively speeds up the overall water splitting process. In view of the above performance, this work offers a fine approach for the further improvement of low fee and excessive effectivity electrocatalyst.  相似文献   

20.
To endow all-solid-state asymmetric supercapacitors with high energy density, cycling stability, and flexibility, we design a binder-free supercapacitor electrode by in situ growth of well-distributed broccoli-like Ni0.75Mn0.25O/C solid solution arrays on a flexible and three-dimensional Ni current collector (3D-Ni). The electrode consists of a bottom layer of compressed but still porous Ni foam with excellent flexibility and high electrical conductivity, an intermediate layer of interconnected Ni nanoparticles providing a large specific surface area for loading of active substances, and a top layer of vertically aligned mesoporous nanosheets of a Ni0.75Mn0.25O/C solid solution. The resultant 3D-Ni/Ni0.75Mn0.25O/C cathode exhibits a specific capacitance of 1657.6 mF cm−2 at 1 mA cm−2 and shows no degradation of the capacitance after 10 000 cycles at 3 mA cm−2. The assembled 3D-Ni/Ni0.75Mn0.25O/C//activated carbon asymmetric supercapacitor has a high specific capacitance of 797.7 mF cm−2 at 2 mA cm−2 and an excellent cycling stability with 85.3 % of capacitance retention after 10 000 cycles at a current density of 3 mA cm−2. The energy density and power density of the asymmetric supercapacitor are up to 6.6 mW h cm−3 and 40.8 mW cm−3, respectively, indicating a fairly promising future of the flexible 3D-Ni/Ni0.75Mn0.25O/C electrode for efficient energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号