首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
室温离子液体对氨基苯磺酸的萃取性能   总被引:8,自引:0,他引:8  
樊静  范云场  王键吉  崔凤灵 《化学学报》2006,64(14):1495-1499
系统研究了[C4mim][PF6], [C6mim][PF6], [C6mim][BF4]和[C8mim][BF4]室温离子液体对间氨基苯磺酸、对氨基苯磺酸稀水溶液的萃取平衡. 实验结果表明: 萃取温度和相体积比的变化对分配比影响不大; 水相pH值对萃取平衡有较大的影响, 氨基苯磺酸在离子液体/水体系中的分配比在pH=4.2时达到最大值; 水相中CaCl2或Na2SO4的存在能较大幅度地提高氨基苯磺酸的分配比; 离子液体的阴离子的性质对分配比有显著的影响, 阴离子为[BF4]的离子液体对氨基苯磺酸的萃取能力大于阴离子为[PF6]的离子液体; 咪唑环上烷基链的长度也对萃取效果有一定的影响. 在所研究的离子液体中, [C6mim][BF4]和[C8mim][BF4]对氨基苯磺酸有较好的萃取性能, 且萃取相中的氨基苯磺酸可回收利用, 离子液体也可循环使用.  相似文献   

2.
The iron‐containing ionic liquids 1‐butyl‐3‐methylimidazolium tetrachloroferrate(III) [C4mim][FeCl4] and 1‐dodecyl‐3‐methylimidazolium tetrachloroferrate(III) [C12mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 °C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35 % in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow‐brown liquid phase recovered after phase separation is the starting IL [C4mim][FeCl4] and [C12mim][FeCl4], respectively. Photometry and ICP‐OES show that about 40 % of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal‐containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.  相似文献   

3.
Electrical conductivity (σ), viscosity (η), and self‐diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium‐based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmIm][BF4], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the 1H NMR chemical shifts of the ionic liquids. The self‐diffusion coefficients D of the cation and anion of [HmIm][CH3COO] in D2O and in [D6]DMSO are determined by using 1H nuclei with pulsed field gradient spin‐echo NMR spectroscopy.  相似文献   

4.
Wu C  Wang J  Wang H  Pei Y  Li Z 《Journal of chromatography. A》2011,1218(48):8587-8593
Compared with the conventional ionic liquids, amino acid ionic liquids are more biodegradable and biocompatible, and can enhance stability of biomaterials. In this work, amino acid ionic liquids 1-butyl-3-methylimidazolium L-serine ([C(4)mim][Ser]), 1-butyl-3-methylimidazolium glycine ([C(4)mim][Gly]), 1-butyl-3-methylimidazolium L-alanine ([C(4)mim][Ala]) and 1-butyl-3-methylimidazolium L-leucine ([C(4)mim][Leu]) have been synthesized. These ionic liquids are found to form aqueous two-phase systems (ATPSs) by the salted-out of K(3)PO(4) in aqueous solutions. Phase diagram of the ATPSs and the Gibbs energies of transfer of methylene group from the bottom salt-rich phase to the top ionic liquid-rich phase have been determined at 298.15K and pH 14, and the effect of anionic structure of the ionic liquids on phase formation of the ATPSs and the relative hydrophobicity between the top and the bottom phases are then examined. In order to understand the effect of relative hydrophobicity of the phases in equilibrium in the ATPSs on the extraction/separation capability of biomolecules, the partition coefficients of cytochrome-c (as a model biomolecule) in the ATPSs are measured by spectrophotometry. It is suggested that hydrophobic interactions are mainly responsible for the higher partition coefficients of cytochrome-c in aqueous two-phase systems at pH 14, and the extraction and separation capacity of biomolecules can be improved by the modulation of the relative hydrophobicity of the phases and/or the pH of the system.  相似文献   

5.
A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different.  相似文献   

6.
The dissolving process of polyols in salt solutions (TBAF, TBAC, TBAB, TBAI, TMAF) and imidazolium-based ionic liquids ([C2mim][OAc], [C2mim][Et2PO4], [C2mim][EtSO4], [C2mim][SCN]) is exemplarily studied by IR spectroscopy. Vibrational bands and their shifts in the OH stretch region reveal crucial information for the dissolved polyol interacting with the anions of the salt solutions and ionic liquids. The well-chosen set of ionic solutions confirms the linear relation between the OH-stretch frequencies and the solubility capacity of the salt solutions. Likewise, it also provides an explanation of the dissolving process at molecular level. Notably, the solubility capacities of the anions in the salt solutions follow the well-known Hofmeister series. This phenomenon can be understood on the basis of the disruption power of the anions and the specific size ratio of the anion/cation combinations.  相似文献   

7.
8.
Amino acid ionic liquids (AAILs) with l ‐lysine (l ‐Lys) as anion were synthesized and applied as new chiral ligands in Zn(II) complexes for chiral ligand‐exchange CE. After effective optimization, baseline enantioseparation of seven pairs of dansylated amino acids was achieved with a buffer of 100.0 mM boric acid, 5.0 mM ammonium acetate, 3.0 mM ZnSO4, and 6.0 mM [C6mim][l ‐Lys] at pH 8.2. To validate the unique behavior of AAILs, a comparative study between the performance of Zn(II)‐l ‐Lys and Zn(II)‐[C6mim][l ‐Lys] systems was conducted. In Zn(II)‐[C6mim][l ‐Lys] system, it has been found that the improved chiral resolution could be obtained and the migration times of the three test samples were markedly prolonged. Then the separation mechanism was further discussed. The role of [C6mim][l ‐Lys] indicated clearly that the synthesized AAILs could be used as chiral ligands and would have potential utilization in separation science in future.  相似文献   

9.
10.
Marked solubility differences of nicotine in the ionic liquids [C(2)mim][NTf(2)], [C(2)mim][EtOSO(3)], and [C(n)mim]Cl, 6 相似文献   

11.
Compared to the general ionic liquids (ILs), a significant deviation of the binary mixtures of 1-decyl-3-methylimidazolium tri(hexafluoroacetylaceto)-copper(II) ([C10mim][Cu(hfacac)3]) with methanol was found, indicating the way methanol interacts with ILs might be governed by the special structure of the chelating anion. IR results showed that the (C2-H) of 1-decyl-3-methylimidazolium hexafluoroacetylacetonate ([C10mim][hfacac]) blue-shifted more significantly than that of [C10mim][Cu(hfacac)3], meanwhile the (C=O) red-shifted in [C10mim][Cu(hfacac)3], which is contrast with that in [C10mim][hfacac]. Two-dimensional correlation analysis of the FTIR spectra indicated that the chelating cavity has little effect on the sequence of the ILs sites that interact with methanol. Combined with small angle X-ray scattering (SAXS) results, the picture of mixing processes in these two systems were proposed. Methanol interacts directly with the anion followed by the cation in [C10mim][hfacac], while methanol preferentially enters the chelating cavity and enhances the packing effect in the [C10mim][Cu(hfacac)3] system.  相似文献   

12.
Experimental and theoretical studies on thermodynamic properties of quinolinium-based ionic liquids (ILs) based on bis(trifluoromethylsulfonyl)imide anion (namely N-butyl-quinoloinium bis(trifluoromethylsulfonyl)imide, [BQuin][NTf2], N-hexylquinoloinium bis(trifluoromethyl-sulfonyl)imide, [HQuin][NTf2], and N-octylquinoloinium bis(trifluoromethyl-sulfonyl)imide, [OQuin][NTf2]) with aromatic sulfur compounds and heptane, as a model compound of fuel were examined in order to assess the applicability of the studied ionic liquids for desulfurization of fuels. With this aim, the temperature-composition phase diagrams of 13 binary mixtures composed of organic sulfur compounds (thiophene, benzothiophene, or 2-methylthiophene) or heptane and ionic liquid (IL) were investigated at ambient pressure. A dynamic method was used to determine the (solid–liquid) equilibrium phase diagrams in binary systems over a wide composition range and temperature range from T = 255.15 to 365.15 K up to the fusion temperature of ILs. The immiscibility gap with an upper critical solution temperature (UCST) was observed for each binary system under study. The influence of the alkane chain length of the substituent on the IL cation and of the sulfur compounds (the aromaticity of the solvent) was described. The experimental (solid + liquid) phase equilibrium dataset were successfully correlated using the well-known NRTL equation.  相似文献   

13.
本文用中和法合成了基于烷基咪唑的甘氨酸离子液体[C3mim][Gly](1-丙基-3-甲基咪唑甘氨酸离子液体)和[c4miml[Gly](1-丁基-3.甲基咪唑甘氨酸离子液体),在298.15K下,0.0400-0.5000molkg^-1浓度范围内测定了不同浓度[C4mim][Oly]和[c3mim][Gly]离子液体水溶液的密度和表面张力,得到了溶液等张比容的实验值,提出了预测不同浓度溶液等张比容的经验方程,利用这个经验方程和李以圭等人提出的溶液表面张力模型,分别估算了这两种离子液体水溶液的表面张力,其估算值和实验值在误差范围内很好地吻合.  相似文献   

14.
Chen Y  Ke F  Wang H  Zhang Y  Liang D 《Chemphyschem》2012,13(1):160-167
The phase separation of ionic liquids (ILs) in water is studied by laser light scattering (LLS). For the ILs with longer alkyl chains, such as [C(8)mim]BF(4) and [C(6)mim]BF(4) (mim = methylimidazolium), macroscopic phase separation occurs in the mixture with water. LLS also reveals the coexistence of the mesoscopic phase, the size of which is in the order of 100-800 nm. In aqueous mixtures of ILs with shorter alkyl chains, such as [C(4)mim]BF(4), only the mesoscopic phase exists. The mesoscopic phase can be effectively removed by filtration through a 0.22 μm filter. However, it reforms with time and can be enhanced by lowering the temperature, thus indicating that it is controlled by thermodynamics. The degree of mesoscopic phase separation can be used to evaluate the miscibility of ILs with water. This study helps to optimize the applications of ILs in related fields, as well as the recycling of ILs in the presence of water.  相似文献   

15.
Considering the ionic nature of ionic liquids (ILs), ionic association is expected to be essential in solutions of ILs and to have an important influence on their applications. Although numerous studies have been reported for the ionic association behavior of ILs in solution, quantitative results are quite scarce. Herein, the conductivities of the ILs [Cnmim]Br (n=4, 6, 8, 10, 12), [C4mim][BF4], and [C4mim][PF6] in various molecular solvents (water, methanol, 1‐propanol, 1‐pentanol, acetonitrile, and acetone) are determined at 298.15 K as a function of IL concentration. The conductance data are analyzed by the Lee–Wheaton conductivity equation in terms of the ionic association constant (KA) and the limiting molar conductance (Λm0). Combined with the values for the Br? anion reported in the literature, the limiting molar conductivities and the transference numbers of the cations and [BF4]? and [PF6]? anions are calculated in the molecular solvents. It is shown that the alkyl chain length of the cations and type of anion affect the ionic association constants and limiting molar conductivities of the ILs. For a given anion (Br?), the Λm0 values decrease with increasing alkyl chain length of the cations in all the molecular solvents, whereas the KA values of the ILs decrease in organic solvents but increase in water as the alkyl chain length of the cations increases. For the [C4mim]+ cation, the limiting molar conductivities of the ILs decrease in the order Br?>[BF4]?>[PF6]?, and their ionic association constants follow the order [BF4]?>[PF6]?>Br? in water, acetone, and acetonitrile. Furthermore, and similar to the classical electrolytes, a linear relationship is observed between ln KA of the ILs and the reciprocal of the dielectric constants of the molecular solvents. The ILs are solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation. This information is expected to be useful for the modulation of the IL conductance by the alkyl chain length of the cations, type of anion, and physical properties of the molecular solvents.  相似文献   

16.
This article reports a study of the effect of anions on the optical Kerr effect (OKE) spectra of binary ionic liquid mixtures with one mixture comprising the 3-methyl-1-pentylimidazolium ([C 5mim] (+)) cation and the anions PF 6 (-) and CF 3CO 2 (-) (TFA (-)), and another mixture comprising the [C 5mim] (+) cation and the anions Br (-) and bis(trifluomethanesulfonyl)imide (NTf 2 (-)). The spectra were obtained by the use of optical heterodyne-detected Raman-induced Kerr Effect Spectroscopy at 295 K. The OKE spectra of the mixtures are compared with the calculated mole-fraction weighted sum of the normalized OKE spectra of the neat liquids. The OKE spectra are nearly additive for [C 5mim]Br/[C 5mim][NTf 2] mixtures, but nonadditive for [C 5mim][PF 6]/[C 5mim][TFA] mixtures. In the case of the equimolar [C 5mim][PF 6]/[C 5mim][TFA] mixture, the nonadditivity is such that the experimental OKE spectrum is narrower than the calculated OKE spectrum. The additivity or nonadditivity of OKE spectra for IL mixtures can be explained by assuming ionic liquids are nanostructurally organized into nonpolar regions and ionic networks. The ionic networks in mixtures will be characterized by "random co-networks" for anions that are nearly the same in size (PF 6 (-) and TFA (-)) and by "block co-networks" for anions that differ greatly in size (Br (-) and NTf 2 (-)).  相似文献   

17.
Systematic molecular dynamics simulations are used to study the structure, dynamics and transport properties of the ionic liquids composed of the tetra-butylphosphonium ([TBP](+), or [P(C(4)H(9))(4)](+)) cation with six amino acid ([AA](-)) anions. The structural features of these ionic liquids were characterized by calculating the partial site-site radial distribution functions, g(r), and computing the dihedral angle distribution of n-butyl side chains in the [TBP](+) cations. The dynamics of the ionic liquids are described by studying the velocity autocorrelation function (VACF) and the mean-square displacement (MSD) for the centers of mass of the ions at different temperatures. The ionic diffusion coefficients and the electrical conductivities were evaluated from both the Einstein and Green-Kubo methods. The cross-correlation terms in the electric-current autocorrelation functions, which are an indication of the ion pair correlations, are investigated. The cationic transference numbers were also estimated to study the contributions of the anions and cations to the transport of charge in these ionic liquids. We determined the role of the amino acid anion structures on the dynamical behavior and the transport coefficients of this family of ionic liquids. In general, the MSD and self-diffusion coefficients of the relatively heavier non-planar [TBP](+) cations are smaller than those of the lighter amino acid anions. Introducing polar functional groups (acid or amide) in the side chain of [AA](-) decreases the diffusion coefficient and electrical conductivity of AAILs. The major factors for determining the magnitude of the transport coefficients are the chemical functionality and the length of the alkyl side chain of the [AA](-) anion of these [TBP][AA] ionic liquids.  相似文献   

18.
Macleaya cordata (Willd) R. Br. is a medicinal plant. The most important bioactive compounds of M. cordata are alkaloids that have many biological activities including antifungal, anti‐inflammatory, and antitumor. In this study, an ionic‐liquid‐modified high‐speed counter‐current chromatography method was established to obtain alkaloids from the fruits of M. cordata. The conditions of ionic‐liquid‐modified high‐speed counter‐current chromatography, including solvent systems, the content of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4]), and the posttreatment of the ionic liquid, were investigated. Five alkaloids protopine, allocryptopine, sanguinarine, 8‐O‐demethylchelerythrine, and chelerythrine were separated from the extract of the fruits using a high speed counter‐current chromatography with two‐phase solvent system composed of dichloromethane/methanol/0.3 mol/L hydrochloric acid aqueous solution/[C4mim][BF4] (4:2:2:0.015, v/v). Their purities were 96.33, 95.56, 97.94, 96.22, and 97.90%, respectively. The results indicated that a small amount of ionic liquids as modifier of the two‐phase solvent system could shorten the separation time and improve the separation efficiency of the alkaloids from the fruits. The ionic‐liquid‐modified high‐speed counter‐current chromatography would provide a feasible way for highly effective separation of alkaloids from natural products.  相似文献   

19.
The spontaneous micelle‐to‐vesicle transition in an aqueous mixture of two surface‐active ionic liquids (SAILs), namely, 1‐butyl‐3‐methylimidazolium n‐octylsulfate ([C4mim][C8SO4]) and 1‐dodecyl‐3‐methylimidazoium chloride ([C12mim]Cl) is described. In addition to detailed structural characterization obtained by using dynamic light scattering, transmission electron microscopy (TEM), and cryogenic TEM techniques, ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) as a donor (D) to rhodamine 6G (R6G) as an acceptor (A) is also used to study micelle–vesicle transitions in the present system. Structural transitions of SAIL micelles ([C4mim][C8SO4] or [C12mim]Cl micelles) to mixed SAIL vesicles resulted in significantly increased D –A distances, and therefore, increased timescale of FRET. In [C4mim][C8SO4] micelles, FRET between C153 and R6G occurs on an ultrafast timescale of 3.3 ps, which corresponds to a D –A distance of about 15 Å. As [C4mim][C8SO4] micelles are transformed into mixed micelles upon the addition of a 0.25 molar fraction of [C12mim]Cl, the timescale of FRET increases to 300 ps, which suggests an increase in the D –A distance to 31 Å. At a 0.5 molar fraction of [C12mim]Cl, unilamellar vesicles are formed in which FRET occurs on multiple timescales of about 250 and 2100 ps, which correspond to D –A distances of 33 and 47 Å. Although in micelles and mixed micelles the obtained D –A distances are well correlated with their radius, in vesicles the obtained D –A distance is within the range of the bilayer thickness.  相似文献   

20.
The molecular interactions of the ionic liquids (ILs) 1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4], 3‐methyl‐1‐octylimidazolium tetrafluoroborate [C8mim][BF4] and 1‐butyl‐3‐methylimidazolium octylsulfate [C4mim][C8OSO3] are investigated in ethylene glycol (EG) over the whole mole fraction range using fluorescence (steady‐state and time‐resolved), Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. The cybotactic region surrounding the pyrene fluorescent probe exhibits peculiar characteristics for different ILs in the EG‐rich region. The extent of solute–solvent interactions is assessed by determining the deviations of experimentally observed vibronic band intensity ratios of peak 1 to peak 3 of pyrene fluorescence (I1/I3) from a composite I1/I3 value obtained using a preferential solvation model. A distinct vibrational frequency shift for various stretching modes of EG (O? H) or ILs (C? H of ring protons, B? F and S?O of anions) indicates specific interactional preferences of EG toward the IL protons/anion. Splitting of the O? H vibration band of EG at 3000–3700 cm?1 into three separate bands, and analysis of the changes in location and area of these bands as a function of concentration enable precise determination of the effect of ILs on hydrogen bridges of EG. NMR chemical shifts and their deviations from ideality show multiple hydrogen‐bonding interactions of varying strengths between unlike molecules in the mixtures. A comparison of spectroscopic results with thermodynamic properties shows that the mixing microscopic behaviour of the investigated systems is completely different from the macroscopic behaviour, which is primarily governed by the difference in shape, size and nature of the molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号