首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

2.
An efficient enantioselective reduction of α‐amino ketones with potassium borohydride solution catalyzed by chiral N,N′‐dioxide–metal complex catalysts was accomplished under mild reaction conditions for the first time. It provided a simple, convenient, and practical approaches for obtaining synthetically important chiral β‐amino alcohols in good to excellent yields (up to 98 %) and enantioselectivities (up to 97 % ee).  相似文献   

3.
A catalytic asymmetric intramolecular homologation of simple ketones with α‐diazoesters was firstly accomplished with a chiral N,N′‐dioxide–Sc(OTf)3 complex. This method provides an efficient access to chiral cyclic α‐aryl/alkyl β‐ketoesters containing an all‐carbon quaternary stereocenter. Under mild conditions, a variety of aryl‐ and alkyl‐substituted ketone groups reacted with α‐diazoester groups smoothly through an intramolecular addition/rearrangement process, producing the β‐ketoesters in high yield and enantiomeric excess.  相似文献   

4.
The enantioselective tandem reaction of β,γ‐unsaturated α‐ketoesters with β‐alkynyl ketones was realized by a bimetallic catalytic system of achiral AuΙΙΙ salt and chiral N,N′‐dioxide‐MgΙΙ complex. The cycloisomerization of β‐alkynyl ketone and asymmetric intermolecular [4+2] cycloaddition with β,γ‐unsaturated α‐ketoesters subsequently occurred, providing an efficient and straightforward access to chiral multifunctional 6,6‐spiroketals in up to 97 % yield, 94 % ee and >19/1 d.r. Besides, a catalytic cycle was proposed based on the results of control experiments.  相似文献   

5.
6.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

7.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

8.
Fully stereodivergent dual‐catalytic α‐allylation of protected α‐amino‐ and α‐hydroxyacetaldehydes is achieved through iridium‐ and amine‐catalyzed substitution of racemic allylic alcohols with chiral enamines generated in situ. The operationally simple method furnishes useful aldehyde building blocks in good yields, more than 99 % ee, and with d.r. values greater than 20:1 in some cases. Additionally, the γ,δ‐unsaturated products can be further functionalized in a stereodivergent fashion with high selectivity and with preservation of stereochemical integrity at the Cα position.  相似文献   

9.
Ynolates were found to react with α‐alkoxy‐, α‐siloxy‐, and α‐aryloxyketones at room temperature to afford tetrasubstituted olefins with high Z selectivity. Since the geometrical selectivity was determined in the ring opening of the β‐lactone enolate intermediates, the torquoselectivity was controlled by the ethereal oxygen atoms. From experimental and theoretical studies, the high Z selectivity is induced by orbital and steric interactions rather than by chelation. In a similar manner, α‐dialkylamino ketones provided olefins with excellent Z selectivity. These products can be easily converted into multisubstituted butenolides and γ‐butyrolactams in good yield.  相似文献   

10.
Asymmetric allylic alkylation of β‐ketoesters with allylic alcohols catalyzed by [Ni(cod)2]/(S)‐H8‐BINAP was found to be a superior synthetic protocol for constructing quaternary chiral centers at the α‐position of β‐ketoesters. The reaction proceeded in high yield and with high enantioselectivity using various β‐ketoesters and allylic alcohols, without any additional activators. The versatility of this methodology for accessing useful and enantioenriched products was demonstrated.  相似文献   

11.
A highly enantioselective α‐ketol rearrangement has been developed. In the presence of a chiral Cu‐bisoxazoline complex, achiral β‐hydroxy‐α‐dicarbonyls were isomerized to chiral α‐hydroxy‐β‐dicarbonyls and their bicyclic derivatives in excellent yields and enantioselectivities. Enantioenriched 2‐acyl‐2‐hydroxy cyclohexan‐1‐ones, dihydroxyhexahydrobenzofuranones, and dihydroxyhexahydro‐cycloheptafuranones, with up to three stereocenters, were readily prepared from achiral starting materials in one operation. The reaction is applicable to the desymmetrization of meso substrates and kinetic resolution of racemic alcohols.  相似文献   

12.
王少华  涂永强  陈鹏 《中国化学》2006,24(2):165-168
The easily prepared and recoverable chiral N-sulfonylated fl-amino alcohol 2 in combination with Ti(OPr-i)4 was found to be an effective chiral catalyst for the enantioselective addition of alkynylzinc to ketones, which gave the useful products, i.e. chiral tertiary propargyl alcohols, with the ee up to 92%.  相似文献   

13.
Due to the chemoselective dehalogenation by SmI2, the addition of a-halomethylsulfones to carbonyl compounds afforded ,β-hydroxysulfones. Those reactions with α-bromomethylsulfones gave the products in moderate to good yields. The SmI2-mediated addition of gem-dihalomethylsulfones to ketones also afforded α-halo-β-hydroxysulfones in moderate yields.  相似文献   

14.
A general and benign iron‐catalyzed α‐alkylation reaction of ketones with primary alcohols has been developed. The key to success of the reaction is the use of a Knölker‐type complex as catalyst (2 mol %) in the presence of Cs2CO3 as base (10 mol %) under hydrogen‐borrowing conditions. Using 2‐aminobenzyl alcohol as alkylation reagent allows for the “green” synthesis of quinoline derivatives.  相似文献   

15.
A AgF‐mediated fluorination with a concomitant cross‐coupling between a gem‐difluoroolefin and a non‐fluorinated olefin is reported. This highly efficient method provides facile access to both α‐CF3 alkenes and β‐CF3 ketones, which otherwise remain challenging to be directly prepared. The application of this method is further demonstrated by the synthesis of bioactive isoxazoline derivatives. This approach represents a conceptually novel route to trifluoromethylated compounds that combines the in situ generation of the CF3 moiety and a C? H functionalization in a single reaction system.  相似文献   

16.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

17.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

18.
Reported herein is the first enantioselective β‐elimination reaction catalyzed by a chiral cation‐binding polyether. By using this catalytic protocol, a wide range of β‐sulfonyl ketones could be effectively resolved with high stereoselectivity (S up to >300). Key to the success of this process is the favorable secondary interactions of the catalyst with the Lewis basic groups on the sulfone substrate. The enone product of this process can be easily converted into the racemic starting material, and allows an effective recycling and overall synthesis of chiral β‐sulfonyl ketones in high yield and excellent enantioselectivity.  相似文献   

19.
β‐Lactams with contiguous tetra‐ and trisubstituted carbon centers were prepared in a highly enantioselective manner through 4‐exo‐trig cyclization of axially chiral enolates generated from readily available α‐amino acids. Use of a weak base (metal carbonate) in a protic solvent (EtOH) is the key to the smooth production of β‐lactams. Use of the weak base is expected to generate the axially chiral enolates in a very low concentration, which undergo intramolecular conjugate addition without suffering intermolecular side reactions. Highly strained β‐lactam enolates thus formed through reversible intramolecular conjugate addition (4‐exo‐trig cyclization) of axially chiral enolates undergo prompt protonation by EtOH in the reaction media (not during the work‐up procedure) to give β‐lactams in up to 97 % ee.  相似文献   

20.
Herein, we describe an intermolecular direct branched‐selective α‐alkylation of cyclic ketones with simple alkenes as the alkylation agents. Through an enamine‐transition metal cooperative catalysis mode, the α‐alkylation is realized in an atom‐ and step‐economic manner with excellent branched selectivity for preparing β‐branched ketones. Employment of a pair of bulky Brønsted acid and base as additives is responsible for enhanced efficiency. Promising enantioselectivity (74 % ee) has been obtained. Experimental and computational mechanistic studies suggest that a pathway through alkene migratory insertion into the Ir?C bond followed by C?H reductive elimination is involved for the high branched selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号