首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以基于亚胺键的嵌段共聚物为构筑单元的温度/pH响应性共聚物复合胶束(CMs), 由于具有亚胺键和核-壳-冠结构, 表现出较高的灵敏度和稳定性. 以聚乙二醇单甲醚(MPEG)、 N-乙烯基己内酰胺(NVCL)和ε-己内酯(ε-CL)为原料, 分别制备了端醛基聚乙二醇单甲醚(MPEG-CHO)、 端醛基聚N-乙烯基己内酰胺(PNVCL-CHO)和端氨基聚己内酯(H2N-PCL), 利用希夫碱反应, 进一步制备了基于亚胺键的聚乙二醇单甲醚-b-聚己内酯(MPEG-b-PCL)和聚N-乙烯基己内酰胺-b-聚己内酯(PNVCL-b-PCL)嵌段共聚物, 对共聚物结构进行了确认. 以MPEG-b-PCL和PNVCL-b-PCL为构筑单元, 制备了共聚物复合胶束, 研究了复合胶束对阿霉素的包载、 释放性质和细胞毒性等. 研究结果表明, 室温下MPEG-b-PCL和PNVCL-b-PCL能够在水中自组装形成以PCL为核、 MPEG和PNVCL为混合壳的共聚物复合胶束, 在生理温度下, 温敏性PNVCL链段发生相变塌缩在PCL核表面, 能够防止药物扩散释放, 亲水性MPEG链段形成可控通道. 药物体外释放结果表明, 在弱酸性环境中, 亚胺键能够断裂, 胶束被破坏, 促进药物的释放, 噻唑蓝(MTT)实验表明, 复合胶束的细胞毒性较低.  相似文献   

2.
Complementary nucleobase‐functionalized polymeric micelles, a combination of adenine‐thymine (A‐U) base pairs and a blend of hydrophilic–hydrophobic polymer pairs, can be used to construct 3D supramolecular polymer networks; these micelles exhibit excellent self‐assembly ability in aqueous solution, rapid pH‐responsiveness, high drug loading capacity, and triggerable drug release. In this study, a multi‐uracil functionalized poly(ε‐caprolactone) (U‐PCL) and adenine end‐capped difunctional oligomeric poly(ethylene glycol) (BA‐PEG) are successfully developed and show high affinity and specific recognition in solution owing to dynamically reversible A‐U‐induced formation of physical cross‐links. The U‐PCL/BA‐PEG blend system produces supramolecular micelles that can be readily adjusted to provide the desired critical micellization concentration, particle size, and stability. Importantly, in vitro release studies show that doxorubicin (DOX)‐loaded micelles exhibit excellent DOX‐encapsulated stability under physiological conditions. When the pH value of the solution is reduced from 7.4 to 5.0, DOX‐loaded micelles can be rapidly triggered to release encapsulated DOX, suggesting these polymeric micelles represent promising candidate pH‐responsive nanocarriers for controlled‐release drug delivery and pharmaceutical applications.

  相似文献   


3.
Thermo-responsive polymeric micelles of poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG-P(HEMA-PLA)-PNIPAM) with core–shell–corona structure were fabricated for applications in controlled drug release. The graft copolymer of PEG-P(HEMA-PLA)-PNIPAM was self-assembled into core–shell micelles with a densely PLA core and mixed PEG/PNIPAM shells at 25 °C in aqueous media. By increasing the temperature above the lower critical solution temperature of PNIPAM, these core–shell micelles could be converted into core–shell–corona micelles because of the collapse of PNIPAM block on the PLA core as the inner shell and the soluble PEG block stretching outside as the outer corona. Anticancer drug doxorubicin (DOX) was loaded in the polymeric micelles as a model drug. Compared with polymeric micelles formed by liner PEG-b-PLA-b-PNIPAM triblock copolymer, these polymeric micelles exhibited higher loading capacity, and release of DOX from the polymeric micelles with core–shell–corona structure was well-controlled.  相似文献   

4.
Comicellization of a star block copolymer poly(ε-caprolactone)-block-poly(diethylamino)ethyl methacrylate (S(PCL-b-PDEAEMA)) and a linear block copolymer methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL) was developed to enhance the stability and lower the cytotoxicity of the micelles. The two copolymers self-assembled into the mixed micelles with a common PCL core surrounded by a mixed PDEAEMA/mPEG shell in aqueous solution. This core-shell structure was transformed to the core-shell-corona structure at high pH due to the collapse of the PDEAEMA segment. The properties of the polymeric micelles were greatly dependent on the weight ratio of the two copolymers and the external pH. As increasing the mPEG-b-PCL content, the size and the zeta potential of the mixed micelles were lowered while the pH-dependent stability and the biocompatibility were improved. Moreover, an increase in pH accelerated the release of indomethacin (IND) from the mixed micelles in vitro. These results augured that the mixed micelles could be applied as a stable pH-sensitive release system.  相似文献   

5.
In acidic solution, complex micelles were formed by diblock copolymers of poly (ethylene glycol)-b-poly (ε-caprolactone) (PEG-b-PCL) and folate-poly (2-(dimethylamino) ethyl methylacrylate)-b-poly (ε-caprolactone) (Fol-PDMAEMA-b-PCL) with a PCL core, a mixed PEG/Fol-PDMAEMA shell. The surface charge of the complex micelles was positive at acidic surroundings for the protonated PDMAEMA. With increasing pH value to 7.4 (above pK a of PDMAEMA), these micelles could convert into a core-shell-corona (CSC) structure composing a hydrophobic PCL core, a collapsed PDMAEMA shell, and a soluble PEG corona. Compared to core-shell micelles formed by PEG-b-PCL, micelles with CSC structure can prolong degradation by enzyme. Doxorubicin was physically loaded into the PCL core. The drug release rate was pH-dependent. At pH 5.5, complex micelles with core-shell structure showed faster drug release rate, while at pH 7.4, complex micelles gained CSC structure which control the drug release at a lower rate. The multifunctional complex micelles were prepared for enhanced tumor therapy.  相似文献   

6.
We have developed core‐shell‐corona‐type polymeric micelles that can integrate multiple functions in one system, including the capability of accommodating hydrophobic dyes into core and hydrophilic drug into the shell, as well as pH‐triggered drug‐release. The neutral and hydrophilic corona sterically stabilizes the multifunctional polymeric micelles in aqueous solution. The mineralization of calcium phosphate (CaP) on the PAA domain not only enhances the diagnostic efficacy of organic dyes, but also works as a diffusion barrier for the controlled release.  相似文献   

7.
A supramolecular block copolymer is prepared by the molecular recognition of nucleobases between poly(2‐(2‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐SS‐poly(ε‐caprolactone)‐adenine (P(MEO2MA‐co‐OEGMA)‐SS‐PCL‐A) and uracil‐terminated poly(ethylene glycol) (PEG‐U). Because the block copolymer is linked by the combination of covalent (disulfide bond) and noncovalent (A U) bonds, it not only has similar properties to conventional covalently linked block copolymers but also possesses a dynamic and tunable nature. The copolymer can self‐assemble into micelles with a PCL core and P(MEO2MA‐co‐OEGMA)/PEG shell. The size and morphologies of the micelles/aggregates can be adjusted by altering the temperature, pH, salt concentration, or adding dithiothreitol (DTT) to the solution. The controlled release of Nile red is achieved at different environmental conditions.

  相似文献   


8.
This work focused on the preparation and the aqueous solution properties of hybrid polymeric micelles consisting of a hydrophobic poly(epsilon-caprolactone) (PCL) core and a mixed shell of hydrophilic poly(ethylene oxide) (PEO) and pH-sensitive poly(2-vinylpyridine) (P2VP). The hybrid micelles were successfully prepared by the rapid addition of acidic water to a binary solution of PCL(34)-b-PEO(114) and PCL(32)-b-P2VP(52) diblock copolymers in N,N-dimethylformamide. These micelles were pH-responsive as result of the pH-dependent ionization of the P2VP block. The impact of pH on the self-assembly of the binary mixture of diblocks-thus on the composition, shape, size and surface properties of the micelles-was studied by a variety of experimental techniques, i.e., dynamic and static light scattering, transmission electron microscopy, Zeta potential, fluorescence spectroscopy and complement hemolytic 50 test.  相似文献   

9.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

10.
Double‐responsive core‐shell‐corona complex micelles for applications in drug release were formed from self‐assembly of two diblock copolymers PtBA‐b‐ PNIPAM and PtBA‐b‐P4VP. The two diblock copolymers coaggregated into core‐shell complex micelles in acidic water with the hydrophobic PtBA blocks as the common core and soluble PNIPAM/P4VP blocks as the mixed shell. Increasing temperature or pH value, the micelles converted into core‐shell‐corona micelles because of the collapse of PNIPAM or P4VP blocks as the inner shell and soluble P4VP or PNIPAM chains stretching outside as the outer corona. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug in micelles in acidic water and released because of the ionization of NAP in alkaline solutions. Compared with pure core‐shell micelles, release of NAP from core‐shell‐corona complex micelles avoided the burst diffusion and the release rate is more easily controlled by tuning the composition of the mixtures or by adjusting the pH of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1804–1810, 2009  相似文献   

11.
A new atom transfer radical polymerization (ATRP) initiator, namely, 2‐(1‐(2‐azidoethoxy)ethoxy)ethyl 2‐bromo‐2‐methylpropanoate containing both “cleavable” acetal linkage and “clickable” azido group was synthesized. Well‐defined azido‐terminated poly(N‐isopropylacrylamide)s (PNIPAAm‐N3)s with molecular weights and dispersity in the range 11,000–19,000 g mol?1 and 1.20–1.28, respectively, were synthesized employing the initiator by ATRP. Acetal containing PCL‐b‐PNIPAAm block copolymer was obtained by alkyne–azide click reaction of azido‐terminated PNIPAAm‐N3 with propargyl‐terminated PCL. Critical aggregation concentration (CAC) of PCL‐b‐PNIPAAm copolymer in aqueous solution was found to be 8.99 × 10?6 M. Lower critical solution temperature (LCST) of PCL‐b‐PNIPAAm copolymer was found to be 32 °C which was lower than that of the precursor PNIPAAm‐N3 (36.4 °C). The effect of dual stimuli viz . temperature and pH on size and morphology of the assemblies of PCL‐b‐PNIPAAm block copolymer revealed that the copolymer below LCST assembled in spherical micelles which subsequently transformed to unstable vesicles above the LCST. Heating these assemblies above 40 °C led to the precipitation of PCL‐b‐PNIPAAm block copolymer. Whereas, at decreased pH, micelles of PCL‐b‐PNIPAAm copolymer disintegrate due to the cleavage of acetal linkage and precipitation of hydrophobic hydroxyl‐terminated PCL. The encapsulated pyrene release kinetics from the micelles of synthesized PCL‐b‐PNIPAAm copolymer was found to be faster at higher temperature and at lower pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1383–1396  相似文献   

12.
Bioreducible and core‐crosslinked hybrid micelles were for the first time fabricated from biodegradable and biocompatible trimethoxysilyl‐terminated and disulfide‐bond‐linked block copolymers poly(ε‐caprolactone)‐S‐S‐poly(ethylene oxide), which were prepared by combining thiol‐ene coupling reaction and ring‐opening polymerization. The molecular structures, physicochemical, self‐assembly, and bioreducible properties of these copolymers were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering (DLS), and transmission electron microscopy. The core‐crosslinking sol‐gel reaction was confirmed by 1H NMR, and the core‐crosslinked hybrid micelles contained about 3 wt % of silica. The bioreducible property of both uncrosslinked and core‐crosslinked micelles in 10 mM 1,4‐dithiothreitol (DTT) solution was monitored by DLS, which demonstrated that the PEO corona gradually shedded from the PCL core. The anticancer doxorubicin drug‐loaded micelles showed nearly spherical morphology compared with blank micelles, presenting a DTT reduction‐triggered drug‐release profile at 37 °C. Notably, the core‐crosslinked hybrid micelles showed about twofold drug loading capacities and a half drug‐release rate compared with the uncross‐liked counterparts. This work provides a useful platform for the fabrication of bioreducible and core‐crosslinked hybrid micelles potential for anticancer drug delivery system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A method was developed to enable the formation of nanoparticles by reversible addition–fragmentation chain transfer polymerization. The thermoresponsive behavior of polymeric micelles was modified by means of micellar inner cores and an outer shell. Polymeric micelles comprising AB block copolymers of poly(N‐isopropylacrylamide) (PIPAAm) and poly(2‐hydroxyethylacrylate) (PHEA) or polystyrene (PSt) were prepared. PIPAAm‐b‐PHEA and PIPAAm‐b‐PSt block copolymers formed a core–shell micellar structure after the dialysis of the block copolymer solutions in organic solvents against water at 20 °C. Upon heating above the lower critical solution temperature (LCST), PIPAAm‐b‐PHEA micelles exhibited an abrupt increase in polarity and an abrupt decrease in rigidity sensed by pyrene. In contrast, PIPAAm‐b‐PSt micelles maintained constant values with lower polarity and higher rigidity than those of PIPAAm‐b‐PHEA micelles over the temperature range of 20–40 °C. Structural deformations produced by the change in the outer polymer shell with temperature cycles through the LCST were proposed for the PHEA core, which possessed a lower glass‐transition temperature (ca. 20 °C) than the LCST of the PIPAAm outer shell (ca. 32.5 °C), whereas the PSt core with a much higher glass‐transition temperature (ca. 100 °C) retained its structure. The nature of the hydrophobic segments composing the micelle inner core offered an important control point for thermoresponsive drug release and the drug activity of the thermoresponsive polymeric micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3312–3320, 2006  相似文献   

14.
Core/shell wormlike polymer brushes with densely grafted poly(ϵ‐caprolactone)‐b‐poly(ethylene oxide) (PCL‐b‐PEO) are synthesized via grafting an alkynyl terminated PCL‐b‐PEO (ay‐PCL17b‐PEO113) onto a well‐defined azido functionalized polymethacrylate (PGA940) and are evaluated preliminarily as a single molecular cylindrical vehicle for drug delivery. Water soluble molecular worms of ca. 230 nm are obtained and then the anticancer drug doxorubicin (DOX) is loaded into its PCL core by hydrophobic interaction. Compared with spherical micelles from linear PCL17b‐PEO113, the brushes demonstrate a lower loading efficiency but a faster release rate of DOX. Confocal laser scanning microscopy measurements show that DOX‐loaded cylindrical molecular brushes can easily enter into HeLa and HepG2 cells in 1 h.  相似文献   

15.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

17.
In this study, three kinds of amphiphilic block copolymers, termed MPEG-block-PDMMA, MPEG-block-PCPMA, and MPEG-block-PMPMA, which were composed of one hydrophilic monomethoxy poly(ethylene glycol) (MPEG) block and one hydrophobic polyacrylate block bearing pendant six-member cyclic ketal groups, were synthesized by atom transfer radical polymerization (ATRP). These polymers can disperse in aqueous media to self-assemble into micellar aggregates with a spherical core-shell structure with mean diameter below 300 nm. The stimuli-responsiveness of polymeric micelles from MPEG-block-PDMMA was detected by fluorescence-probe technique at pH 3.5 and 37 °C. The effect of chemical architecture and composition of the polymers on the pH-responsive properties of polymeric micelles was also studied. A combination of pH and temperature to trigger release behavior of these polymeric micelles was discussed by comparing the encapsulated molecule release ability under various pH and temperature conditions and analyzing chemical structural changes of the polymer before and after the triggering.  相似文献   

18.
Monomethoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone)(MPEG‐b‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization. The polymeric nanoparticles prepared by precipitation/solvent evaporation exhibit a core–shell structure, characterized by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). The hydrolytic degradation of those nanoparticles was studied by DLS, NMR, and gel permeation chromatography (GPC). It was found that the molecular weight of PCL block in a copolymer significantly affects the stability of nanoparticles in aqueous solution and nanoparticles with shorter PCL block length degraded faster. The degradation behaviors could be divided into two stages with slow degradation at the interface region via swelling effect and fast degradation at inner core via caves and channels formed by cleavage of ester bonds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, we report the self‐assembly of flocculation‐resistant multimolecular micelles with thermoresponsive corona from novel dendritic heteroarm star copolymers. The micelles have a core‐shell‐corona structure at room temperature according to pyrene probe fluorescence spectrometry, proton nuclear magnetic resonance (1H NMR), transmission electron microscopy, and dynamic light scattering measurements. Increasing the temperature above the lower critical solution temperature (LCST), the micelles show high flocculation‐resistant ability resulting from a structure transition from core‐shell‐corona to core‐shell confirmed by a quantitative variable temperature 1H NMR analysis method using potassium hydrogen phthalate as an external standard. A big volume change of the micelles is observed during the LCST transition. The drug loading and temperature‐dependent release properties of the micelles are also investigated by using coumarin 102 as a model drug, which displays a rapid drug release at a temperature above the LCST. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Star‐shaped amphiphilic poly(ε‐caprolactone)‐block‐poly(oligo(ethylene glycol) methyl ether methacrylate) with porphyrin core (SPPCL‐b‐POEGMA) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Star‐shaped PCL with porphyrin core (SPPCL) was prepared by bulk polymerization of ε‐caprolactone (CL) with tetrahydroxyethyl‐terminated porphyrin initiator and tin 2‐ethylexanote (Sn(Oct)2) catalyst. SPPCL was converted into SPPCLBr macroinitiator with 2‐bromoisobutyryl bromide. Star‐shaped SPPCL‐b‐POEGMA was obtained via ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). SPPCL‐b‐POEGMA can easily self‐assemble into micelles in aqueous solution via dialysis method. The formation of micellar aggregates were confirmed by critical micelle formation concentration, dynamic light scattering, and transmission electron microscopy. The micelles also exhibit property of temperature‐induced drug release and the lower critical solution temperature (LCST) was 60.6 °C. Furthermore, SPPCL‐b‐POEGMA micelles can reversibly swell and shrink in response to external temperature. In addition, SPPCL‐b‐POEGMA can present obvious fluorescence. Finally, the controlled drug release of copolymer micelles can be achieved by the change of temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号