首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The technological needs imposed by the exponential miniaturization trend of conventional electronic devices has drawn attention towards the development of smaller and faster devices like ultrafast molecular switches. In recent years molecular switches emerge again in the focus of active and innovative research with state-of-the-art optical tools recording their dynamics in real time. Still many questions about the underlying microscopic mechanism are left open, including potential factors that effect the switching process in either way, improve or worsen it. Due to the complexity of such molecules it is difficult to obtain a global answer from experiment alone. On the other side molecular switches are generally too large for a complete quantum chemical and quantum dynamical calculation. In our group we therefore developed an ab initio based modular model to handle the laser induced quantum dynamics in molecular switches like fulgides. It enables us to study the effect of internal molecular coupling and of the molecular response to external fields. We can investigate the related wave packet dynamics, the switching efficiency and the controllability. Our results focus on the laser induced ring opening in fulgides, which equals one direction of the switching process. Presented are the influence of a conical intersection seam and of time-dependent potentials, mimicking the mean interaction with the environment. Furthermore the relation of controllability and the wave packet's momentum is studied and the influence of potential barriers on the switching dynamics is shown.  相似文献   

2.
The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context.  相似文献   

3.
We address the nonadiabatic quantum dynamics of (macro)systems involving a vast number of nuclear degrees of freedom (modes) in the presence of conical intersections. The macrosystem is first decomposed into a system part carrying a few, strongly coupled modes, and an environment, comprising the remaining modes. By successively transforming the modes of the environment, a hierarchy of effective Hamiltonians for the environment can be constructed. Each effective Hamiltonian depends on a reduced number of effective modes, which carry cumulative effects. The environment is described by a few effective modes augmented by a residual environment. In practice, the effective modes can be added to the system’s modes and the quantum dynamics of the entire macrosystem can be accurately calculated on a limited time-interval. For longer times, however, the residual environment plays a role. We investigate the possibility to treat fully quantum mechanically the system plus a few effective environmental modes, augmented by the dynamics of the residual environment treated by the time-dependent Hartree (TDH) approximation. While the TDH approximation is known to fail to correctly reproduce the dynamics in the presence of conical intersections, it is shown that its use on top of the effective-mode formalism leads to much better results. Two numerical examples are presented and discussed; one of them is known to be a critical case for the TDH approximation.  相似文献   

4.
Electronic structure calculations and nonadiabatic dynamics simulations (more than 2000 trajectories) are used to explore the ZE photoisomerization mechanism and excited‐state decay dynamics of two arylazopyrazole photoswitches. Two chiral S1/S0 conical intersections with associated enantiomeric S1 relaxation paths that are barrierless and efficient (timescale of ca. 50 fs) were found. For the parent arylazopyrazole (Z8) both paths contribute evenly to the S1 excited‐state decay, whereas for the dimethyl derivative (Z11) each of the two chiral cis minima decays almost exclusively through one specific enantiomeric S1 relaxation path. To our knowledge, the Z11 arylazopyrazole is thus the first example for nearly stereospecific unidirectional excited‐state relaxation.  相似文献   

5.
Photoswitchable azobenzene cross‐linkers can control the folding and unfolding of peptides by photoisomerization and can thus regulate peptide affinities and enzyme activities. Using quantum mechanics/molecular mechanics (QM/MM) methods and classical MM force fields, we report the first molecular dynamics simulations of the photoinduced folding and unfolding processes in the azobenzene cross‐linked FK‐11 peptide. We find that the interactions between the peptide and the azobenzene cross‐linker are crucial for controlling the evolution of the secondary structure of the peptide and responsible for accelerating the folding and unfolding events. They also modify the photoisomerization mechanism of the azobenzene cross‐linker compared with the situation in vacuo or in solution.  相似文献   

6.
7.
In this review article, we discuss and analyze the validities of centrifugal sudden (CS) approximations in chemical reactions, with emphasis on the recent progress in the comparison studies of close‐coupling and CS approximations in chemical dynamics both adiabatically and nonadiabatically. All these relevant studies are performed using the time‐dependent wave packet approach, focusing on several typical and benchmark chemical reactions, for example, the triatomic adiabatic ion–molecule reactions of Ne + , He + HeH+, O+ + H2, O+ + D2, and O+ + HD, the triatomic nonadiabatic reactions of N + NH and O + N2, and the tetraatomic and polyatomic adiabatic reactions of H2 + D2 and H + CHD3. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
In this work, we examine nonadiabatic population dynamics for 11B1 and 11A2 states of ozone molecule (O3). In O3, two lowest singlet excited states, 1A2 and 1B1, can be coupled. Thus, population transfer between them occurs through the seam involving these two states. At any point of the seam (conical intersection), the Born-Oppenheimer approximation breaks down, and it is necessary to investigate nonadiabatic dynamics. We consider a linear vibronic coupling Hamiltonian model and evaluate vibronic coupling constant, diabatic frequencies for three modes of O3, bilinear and quadratic coupling constants for diabatic potentials, displacements, and Huang-Rhys coupling constants using ab initio calculations. The electronic structure calculations have been performed at the multireference configuration interaction and complete active space with second-order perturbation theory with a full-valence complete active space self-consistent field methods and augmented Dunning's standard correlation-consistent-polarized quadruple zeta basis set to determine ab initio potential energy surfaces for the ground state and first two excited states of O3, respectively. We have chosen active space comprising 18 electrons distributed over 12 active orbitals. Our calculations predict the linear vibronic coupling constant 0.123 eV. We have obtained the population on the 11B1 and 11A2 excited electronic states for the first 500 fs after photoexcitation.  相似文献   

9.
Nonradiative decay pathways associated with vibronically coupled S1(ππ*)–S2(*) potential energy surfaces of 3- and 5-hydroxychromones are investigated by employing the linear vibronic coupling approach. The presence of a conical intersection close to the Franck–Condon point is identified based on the critical examination of computed energetics and structural parameters of stationary points. We show that very minimal displacements of relevant atoms of intramolecular proton transfer geometry are adequate to drive the molecule toward the conical intersection nuclear configuration. The evolving wavepacket on S1(ππ*) bifurcates at the conical intersection: a part of the wavepacket moves to S2(*) within a few femtoseconds while the other decays to S1 minimum. Our findings indicate the possibility of forming the proton transfer tautomer product via S2(*), competing with the traditional pathway occurring on S1(ππ*).  相似文献   

10.
The photodissociation dynamics of the triatomic (or pseudo‐triatomic) system in the nonadiabatic multiple electronic states is investigated by employing a time‐dependent quantum wave packet method, while the time propagation of the wave packet is carried out using the split‐operator scheme. As a numerical example, the photodissociation dynamics of CH3I in three electronic states 1Q1(A′), 1Q1(A″), and 3Q0+ is studied and CH3I is treated as a pseudotriatomic model. The absorption spectra and product vibrational state distributions are calculated and compared with previous theoretical work. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

11.
12.
The idea to derive the nonadiabatic coupling terms by solving the Curl equations (Avery, J.; Baer, M.; Billing, G. D. Mol Phys 2002, 100, 1011) is extended to a three‐state system where the first and second states form one conical intersection, i.e., τ12 and the second and the third states form another conical intersection, i.e., τ23. Whereas the two‐state Curl equations form a set of linear differential equations, the extension to a three‐state system not only increases the number of equations but also leads to nonlinear terms. In the present study, we developed a perturbative scheme, which guarantees convergence if the overlap between the two interacting conical intersections is not too strong. Among other things, we also revealed that the nonadiabatic coupling term between the first and third states, i.e., τ13 (such interactions do not originate from conical intersection) is formed due to the interaction between τ12 and τ23. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

13.
The dynamics of the dimethyl methylphosphonate (DMMP) radical cation after production by strong field adiabatic ionization have been investigated. Pump-probe experiments using strong field 1300 nm pulses to adiabatically ionize DMMP and a 800 nm non-ionizing probe induce coherent oscillations of the parent ion yield with a period of about 45 fs. The yields of two fragments, PO2C2H7+ and PO2CH4+, oscillate approximately out of phase with the parent ion, but with a slight phase shift relative to each other. We use electronic structure theory and nonadiabatic surface hopping dynamics to understand the underlying dynamics. The results show that while the cation oscillates on the ground state along the P=O bond stretch coordinate, the probe excites population to higher electronic states that can lead to fragments PO2C2H7+ and PO2CH4+. The computational results combined with the experimental observations indicate that the two conformers of DMMP that are populated under experimental conditions exhibit different dynamics after being excited to the higher electronic states of the cation leading to different dissociation products. These results highlight the potential usefulness of these pump-probe measurements as a tool to study conformer-specific dynamics in molecules of biological interest.  相似文献   

14.
Triplet-triplet annihilation (TTA) is a spin-allowed conversion of two triplet states into one singlet excited state, which provides an efficient route to generate a photon of higher frequency than the incident light. Multiple energy transfer steps between absorbing (sensitizer) and emitting (annihilator) molecular species are involved in the TTA based photon upconversion process. TTA compounds have recently been studied for solar energy applications, even though the maximum upconversion efficiency of 50 % is yet to be achieved. With the aid of quantum calculations and based on a few key requirements, several design principles have been established to develop the well-functioning annihilators. However, a complete molecular level understanding of triplet fusion dynamics is still missing. In this work, we have employed multi-reference electronic structure methods along with quantum dynamics to obtain a detailed and fundamental understanding of TTA mechanism in naphthalene. Our results suggest that the TTA process in naphthalene is mediated by conical intersections. In addition, we have explored the triplet fusion dynamics under the influence of strong light-matter coupling and found an increase of the TTA based upconversion efficiency.  相似文献   

15.
Next-generation quantum theory of atoms in molecules was applied to analyze, along an entire bond path, intramolecular interactions known to influence the photoisomerization dynamics of a light-driven rotary molecular motor. The 3D bond-path framework set B0,1 constructed from the least and most preferred directions of electronic motion, provided new insights into the bonding leading to different S1 state lifetimes including the first quantification of covalent character of a closed-shell intramolecular bond path. We undertook the first use of the stress tensor trajectory Tσ(s) analysis on selected nonadiabatic molecular dynamics trajectories with the electron densities obtained using the ensemble density functional theory method. The stress tensor Tσ(s) analysis was found to be well suited to follow the dynamics trajectories that included the S0 and S1 electronic states through the conical intersection and also provided to a new measure to assess the degree of purity of the axial bond rotation for the design of rotary molecular motors.  相似文献   

16.
基于LEPS势能面, 用三维含时量子波包法对O(3~P)+HBr(DBr)反应进行了准确的动力学计算. 计算的结果表明, 振动激发对这个反应是有效的, 而转动激发在某一能量范围内具有方位效应. 计算得到了该反应的速率常数和反应截面, 速率常数kO+HBr的计算值同实验值符合得很好. 通过对相应结果的对比, 可以发现这个反应具有比较明显的同位素效应.  相似文献   

17.
基于LEPS势能面, 用三维含时量子波包法对O(3P)+HBr(DBr)反应进行了准确的动力学计算. 计算的结果表明, 振动激发对这个反应是有效的, 而转动激发在某一能量范围内具有方位效应. 计算得到了该反应的速率常数和反应截面, 速率常数kO+HBr的计算值同实验值符合得很好. 通过对相应结果的对比, 可以发现这个反应具有比较明显的同位素效应.  相似文献   

18.
A time-dependent quantum wave packet method was used to study the dynamics of dissociative adsorption of H2 and D2 on a flat and static surface. The molecule-surface interaction is described using a modified London-Eyring-Polanyi-Sato (LEPS) type potential for the H2/Ni(100) system. The three-dimensional (3-D) dissociation probabilities were calculated for different initial rovibrational states as a function of initial incident energies. Our results show that the dissociation of the diatomic rotational states whose quantum numbers satisfyj+m = odd is forbidden at low energies for the homonuclear Hz and D2 due to the selection rule. The effect of the rotational orientation of diatoms on adsorption predicts that the in-plane rotation (m = j) is more favorable for dissociation than the out-of-plane rotation (m = 0). Enhanced dissociation for vibrationally excited molecules and the significant enhancement of the dissociation probability of H2 when compared to D2 were explained reasonably in terms of quantum mechanical zero-point energies, the tunneling effect and the reflection from an activation barrier. Project supported by the National Natural Science Foundation of China (Grant No. 19694033) and partially by the Science Foundation for Overseas Chinese Scholars and Students, administered by the State Education Commission of China (Grant No. 1992), by the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University at Changchun (Grant No. 98011, and by the Natural Science Foundation of Shandong Province (Grant No. Y96B03022)  相似文献   

19.
We present accurate quantum dynamic calculations of the reaction C(1D) + HD on the latest version of the potential energy surface [Zhang et al., J. Chem. Phys. 140, 234301 (2014)]. Using a Chebyshev real wave packet method with full Coriolis coupling, we obtain the initial state‐specified ( ) reaction probabilities, integral cross sections, and rate constants. The resulting probabilities display oscillatory structures due to numerous long‐lived resonances supported by the deep potential well. The calculated rate constants and CD/CH product branching ratio at room temperature are in reasonably good agreement with the experimental measurements.  相似文献   

20.
The photodetachment spectroscopy of B3- anion is theoretically studied with the aid of a quantum dynamical approach. The theoretical results are compared with the available experimental photoelectron spectra of B3-. Both B3- and B3 possess D(3h) symmetry at the equilibrium configuration of their electronic ground state. Distortion of B3 along its degenerate vibrational mode nu2 splits the degeneracy of its excited C2E' electronic manifold and exhibits (E [symbol: see text] e)-Jahn-Teller (JT) activity. The components of the JT split potential energy surface form conical intersections, and they can also undergo pseudo-Jahn-Teller (PJT) crossings with the X2A1' electronic ground state of B3 via the degenerate nu2 vibrational mode. The impact of the JT and PJT interactions on the nuclear dynamics of B3 in its X2A1'-C2E' electronic states is examined here by establishing a diabatic model Hamiltonian. The parameters of the electronic part of this Hamiltonian are calculated by performing electronic structure calculations and the nuclear dynamics on it is simulated by solving quantum eigenvalue equation. The theoretical results are in good accord with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号