首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Herein, we report a detailed periodic DFT investigation of Mn(II)-based [(Mn4Cl)3(BTT)8]3− (BTT3−=1,3,5-benzenetristetrazolate) metal-organic framework (MOF) to explore various hydrogen binding pockets, nature of MOF…H2 interactions, magnetic coupling and, H2 uptake capacity. Earlier experiments found an uptake capacity of 6.9 wt % of H2, with the heat of adsorption estimated to be ∼10 kJ/mol, which is one among the highest for any MOFs reported. Our calculations unveil different binding sites with computed binding energy varying from −6 to −15 kJ/mol. The binding of H2 at the Mn2+ site is found to be the strongest (site I), with H2 found to bind Mn2+ ion in a η2 fashion with a distance of 2.27 Å and binding energy of −15.4 kJ/mol. The bonding analysis performed using NBO and AIM reveal a strong donation of σ (H2) to the dz2 orbital of the Mn2+ ion responsible for such large binding energy. The other binding pockets, such as −Cl (site II) and BTT ligands (site III and IV) were found to be weaker, with the binding energy decreasing in the order I>II>III>IV. The average binding energy computed for these four sites put together is 9.6 kJ/mol, which is in excellent agreement with the experimental value of ∼10 kJ/mol. We have expanded our calculations to compute binding energy for multiple sites simultaneously, and in this model, the binding energy per site was found to decrease as we increased the number of H2 molecules suggesting electronic and steric factors controlling the overall uptake capacity. The calculated adsorption isotherm using the GCMC method reproduces the experimental observations. Further, the magnetic coupling computed for the unbound MOF reveals moderate ferromagnetic and strong antiferromagnetic coupling within the tetrameric {Mn4} unit leading to a three-up-one-down spin configuration as the ground state. These were then coupled ferromagnetically to other tetrameric units in the MOF network. The magnetic coupling was found to alter only marginally upon gas binding, suggesting that both exchange interaction and the spin-states are unlikely to play a role in the H2 uptake. This is contrary to the O2 uptake studied lately, where strong dependence on exchange-coupling/spin state was witnessed, suggesting exchange-coupling/magnetic field dependent binding as a viable route for gas separation.  相似文献   

2.
采用密度泛函理论(DFT)UB3LYP方法对Ru在单重态、三重态及五重态势能面上催化N_2与H_2反应合成氨的两态反应机理进行理论研究,发现该反应为典型的两态反应。计算得到最低能量交叉点(MECP)处自旋-轨道耦合常数(H_(soc))及双程系间窜越几率(P~(ISC)),MECP1:H_(soc)=508.34 cm~(-1),P_2~(ISC)=0.85,MECP9:H_(soc)=269.21 cm~(-1),P_2~(ISC)=0.27。运用能量跨度模型(energetic span model)确定Ru催化合成氨反应的转化频率(TOF)决速过渡态(TDTS)为~3TS2-3,TOF决速中间体(TDI)为~3IM9。  相似文献   

3.
New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest adiabatic potential energy surfaces correlating asymptotically with Cl(^2p)+H2 have been transformed to adiabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin-orbit coupling surfaces have also been computed using the Breit-Pauli Hamiltonian. Properties of the new potential are described. Reaction dynamics based on the new potential agrees with the recent experimental results quite well.  相似文献   

4.
5.
The O(3P) + C2H2 reaction plays an important role in hydrocarbon combustion. It has two primary competing channels: H + HCCO (ketenyl) and CO + CH2 (triplet methylene). To further understand the microscopic dynamic mechanism of this reaction, we report here a detailed quasi-classical trajectory study of the O(3P) + C2H2 reaction on the recently developed full-dimensional potential energy surface (PES). The entrance barrier TS1 is the rate-limiting barrier in the reaction. The translation of reactants can greatly promote reactivity, due to strong coupling with the reaction coordinate at TS1. The O(3P) + C2H2 reaction progress through a complex-forming mechanism, in which the intermediate HCCHO lives at least through the duration of a rotational period. The energy redistribution takes place during the creation of the long-lived high vibrationally (and rotationally) excited HCCHO in the reaction. The product energy partitioning of the two channels and CO vibrational distributions agree with experimental data, and the vibrational state distributions of all modes of products present a Boltzmann-like distribution.  相似文献   

6.
The halide anions present in the electrolyte improve the Faradaic efficiencies (FEs) of the multi-hydrocarbon (C2+) products for the electrochemical reduction of CO2 over copper (Cu) catalysts. However, the mechanism behind the increased yield of C2+ products with the addition of halide anions remains indistinct. In this study, we analysed the mechanism by investigating the electronic structures and computing the relative free energies of intermediates formed from CO2 to C2H4 on the Cu (100) facet based on density functional theory (DFT) calculations. The results show that formyl *CHO from the hydrogenation reaction of the adsorbed *CO acts as the key intermediate, and the C−C coupling reaction occurs preferentially between *CHO and *CO with the formation of a *CHO-CO intermediate. We then propose a free-energy pathway of C2H4 formation. We find that the presence of halide anions significantly decreases the free energy of the *CHOCH intermediate, and enhances desorption of C2H4 in the order of I>Cl>Br>F. Lastly, the obtained results are rationalized through Bader charge analysis.  相似文献   

7.
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4→TiC2H2 + (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm−1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1-2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two distinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2 +(2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H44IC→IM1-4B24,2ISC→IM1-2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2 +(2A2)+H2. Supported by ‘Qinglan’ Talent Engineering Funds by Tianshui Normal University.  相似文献   

8.
A fully converged close coupling study is performed of the collinear (H+ + H2) system on the lower potential energy surface. The surface is derived by the DIMZO (diatomic in molecules-zero overlap) method. Transition probabilities for the reactions: H+ + H2 (ν = 0, 1) → H2 (ν′) + H+; ν′ = 0,..., 7 are given for a number of total energies in the range from 1 eV to 3 eV. It is found that for this energy region the transition ν = 0 → ν′ = 0 is the most preferential. This fact leads us to believe that addition of the upper surface will have a minor effect on the calculated probabilities of transitions from ν = 0 in the above-mentioned energy range.  相似文献   

9.
The reaction of Co(NO3)2·6H2O with 1,3,5-benzenetricarboxylic acid (H3btc, trimesic acid) in DMF at 100 °C afforded the coordination polymer [Co3(dmf)6(btc)(Hbtc)(H2btc)]··9H2O (1) (dmf is N,N′-dimethylformamide, DMF). According to the X-ray diffraction study, the metal-organic coordination polymer is composed of planar honeycomb (6,3) networks, in which the organic benzenetricarboxylate anions and the inorganic Co2+ cations play a role of three-connected nodes. Disordered water molecules are intercalated between the layers. A study of the magnetic properties showed the presence of a weak antiferromagnetic coupling between the Co2+ ions (S = 3/2). Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1719–1723, September, 2007.  相似文献   

10.
In a tandem mass spectrometer we have measured the excitation functions (reaction cross section as a function of collision energy) for the following solvated-ion reactant pairs: OH-.(H2O) + H2; OD-.(D2O) + D2; and OH-.(H2O) + D2—in the collision energy range 0–2 eV. Product channels include H3O--type production, collision-induced dissociation of reactants and products (OH- and H- types) and isotopic mixing. These solvated-ion reactions are used to correlate the reactivity of the isotope exchange reaction OH- + D2→OD- + HD occuring in the gas phase and solution, identifying a proton-transfer mechanism occuring within an H3O- intermediate.  相似文献   

11.
The reaction mechanism of the Y+ cation with CH3CHO has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ECP/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, methyl C-H and C-O activation. These reactions can lead to four different products (Y+CH4 + CO, Y+CO + CH4, Y+COCH2 + H2 and Y+O + C2H4). The minimum energy reaction path is found to involve the spin inversion in the different reaction steps, this potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.  相似文献   

12.
Photo-driven CH4 conversion to multi-carbon products and H2 is attractive but challenging, and the development of efficient catalytic systems is critical. Herein, we construct a solar-energy-driven redox cycle for combining CH4 conversion and H2 production using iron ions. A photo-driven iron-induced reaction system was developed, which is efficient at selective coupling of CH4 as well as conversion of benzene and cyclohexane under mild conditions. For CH4 conversion, 94 % C2 selectivity and a C2H6 formation rate of 8.4 μmol h−1 is achieved. Mechanistic studies reveal that CH4 coupling is induced by hydroxyl radical, which is generated by photo-driven intermolecular charge migration of an Fe3+ complex. The delicate coordination structure of the [Fe(H2O)5OH]2+ complex ensures selective C−H bond activation and C−C coupling of CH4. The produced Fe2+ can be used to reduce the potential for electrolytic H2 production, and then turns back into Fe3+, forming an energy-saving and sustainable recyclable system.  相似文献   

13.
The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the ve di erent reaction paths are consid-ered corresponding to HCOCHO+H2O, HCOCHO+H2O H2O, HCOCHO H2O+H2O, HCOCHO+H2O H2SO4 and HCOCHO H2O+H2SO4. Results show that H2SO4 has a strong catalytic ability, which can signi cantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6-311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11cm3/(molecule s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11cm3/(molecule s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi-tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer  相似文献   

14.
Metal carbide species have been proposed as a new type of chemical entity to activate methane in both gas‐phase and condensed‐phase studies. Herein, methane activation by the diatomic cation MoC+ is presented. MoC+ ions have been prepared and mass‐selected by a quadrupole mass filter and then allowed to interact with methane in a hexapole reaction cell. The reactant and product ions have been detected by a reflectron time‐of‐flight mass spectrometer. Bare metal Mo+ and MoC2H2+ ions have been observed as products, suggesting the occurrence of ethylene elimination and dehydrogenation reactions. The branching ratio of the C2H4 elimination channel is much larger than that of the dehydrogenation channel. Density functional theory calculations have been performed to explore in detail the mechanism of the reaction of MoC+ with CH4. The computed results indicate that the ethylene elimination process involves the occurrence of spin conversions in the C?C coupling (doublet→quartet) and hydrogen atom transfer (quartet→sextet) steps. The carbon atom in MoC+ plays a key role in methane activation because it becomes sp3 hybridized in the initial stages of the ethylene elimination reaction, which leads to much lower energy barriers and more stable intermediates. This study provides insights into the C?H bond activation and C?C coupling involved in methane transformation over molybdenum carbide‐based catalysts.  相似文献   

15.
Exact quantum mechanical results for collinear He + H+2 → H + HeH+ reactive collisions are presented for the (total) energy range of 0.93 cV to 1.4 eV. The H+2 initial vibrational states include ν = 0 through ν = 5. The diatomics-in-molecules semi-empirical surface of Kuntz is used in the computations. Except for a short range of energies, the calculated reaction probabilities of H+2 (ν = 0) are larger than those of excited H+2.  相似文献   

16.
The gas‐phase reaction mechanism between methane and rhodium monoxide for the formation of methanol, syngas, formaldehyde, water, and methyl radical have been studied in detail on the doublet and quartet state potential energy surfaces at the CCSD(T)/6‐311+G(2d, 2p), SDD//B3LYP/6‐311+G(2d, 2p), SDD level. Over the 300–1100 K temperature range, the branching ratio for the Rh(4F) + CH3OH channel is 97.5–100%, whereas the branching ratio for the D‐CH2ORh + H2 channel is 0.0–2.5%, and the branching ratio for the D‐CH2ORh + H2 channel is so small to be ruled out. The minimum energy reaction pathway for the main product methanol formation involving two spin inversions prefers to both start and terminate on the ground quartet state, where the ground doublet intermediate CH3RhOH is energetically preferred, and its formation rate constant over the 300–1100 K temperature range is fitted by kCH3RhOH = 7.03 × 106 exp(?69.484/RT) dm3 mol?1 s?1. On the other hand, the main products shall be Rh + CH3OH in the reactions of RhO + CH4, CH2ORh + H2, Rh + CO +2H2, and RhCH2 + H2O, whereas the main products shall be CH2ORh + H2 in the reaction of Rh + CH3OH. Meanwhile, the doublet intermediates H2RhOCH2 and CH3RhOH are predicted to be energetically favored in the reactions of Rh + CH3OH and CH2ORh + H2 and in the reaction of RhCH2 + H2O, respectively. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

17.
Ab initio molecular dynamics approach has been extended to multi-state dynamics on the basis of the spin–orbit coupled electronic states that are obtained through diagonalization of the spin–orbit coupling matrix with the multi-state second-order multireference perturbation theory energies in diagonal elements and the spin–orbit coupling terms at the state-averaged complete active space self-consistent field level in off-diagonal elements. Nonadiabatic transitions over the spin–orbit coupled states were taken into account explicitly by a surface hopping scheme with utilizing the nonadiabatic coupling terms calculated by numerical differentiation of the spin–orbit coupled wavefunctions and analytical nonadiabatic coupling terms. The present method was applied to the A-band photodissociation of methyl iodide, CH3I + hv → CH3 + I (2P3/2)/I* (2P1/2), for which a pioneering theoretical work was reported by Amatatsu, Yabushita, and Morokuma. The present results reproduced well the experimental branching ratio and energy distributions in the dissociative products. © 2018 Wiley Periodicals, Inc.  相似文献   

18.
A PdCl2‐catalyzed direct alkynylation of arylboronic acids to give diarylacetylenes is described. The optimal conditions using PdCl2 as catalyst, MeOH PhMe H2O as solvent and K2CO3 as base effectively suppressed the formation of homo‐coupling product and afforded moderate to good yield of the desired unsymmetrical coupling product. This reaction represents a Suzuki‐type sp2(C B)–sp(C X) cross‐coupling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Although the reaction chemistry of transition metallacyclopropenes has been well-established in the last decades, the reactivity of rare-earth metallacyclopropenes remains elusive. Herein, we report the reaction of lutetacyclopropene 1 toward a series of unsaturated molecules. The reaction of 1 with one equiv. of PhCOMe, Ar1CHO (Ar1=2,6-Me2C6H3), W(CO)6, and PhCH=NPh provided oxalutetacyclopentenes, metallacyclic lutetoxycarbene, and azalutetacyclopentene via 1,2-insertion of C=O, C≡O, or C=N bonds into Lu−Csp2 bond, respectively. However, the reaction between 1 and Ar2N=C=NAr2 (Ar2=4-MeC6H4) gave an acyclic lutetium complex with a diamidinate ligand by the coupling of one molecule of 1 with two carbodiimides, irrespective of the amount of carbodiimide employed. More interestingly, when 1 was treated with two equiv. of Ar1CHO, the reductive coupling of two C=O bonds was discovered to give a lutetium pinacolate complex along with the release of tolan. Remarkably, the reactivity of 1 is significantly different from that of scandacyclopropenes; these metallacycles derived from 1 all represent the first cases in rare-earth organometallic chemistry.  相似文献   

20.
The reaction C2H4+ + C2H4 → CH3 + C3H5+, known to pass through a persistent C4H8+ complex, has been used to test accepted models of unimolecular decay. Experimental product translational energy spectra are interpreted using an expression derived from RRKM theory. Data and calculations agree well, but only if the assumption of complete energy equilibration prior to decay is discarded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号